scholarly journals Sox2 and canonical Wnt signaling interact to activate a developmental checkpoint coordinating morphogenesis with mesodermal fate acquisition

Author(s):  
Brian A. Kinney ◽  
Richard H. Row ◽  
Yu-Jung Tseng ◽  
Maxwell D. Weidmann ◽  
Holger Knaut ◽  
...  

AbstractAnimal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. It is unclear if there are mechanisms that prevent uncoupling of these processes to ensure robust development. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial to mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here we show that cells expressing the neural inducing transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesodermal territory. This is critical for preventing ectopic neural tissue from forming. The mechanism involves specific interactions between Sox2 and the mesoderm inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2 expressing cells trapped in the partial EMT, cells are now able to exit into the mesodermal territory, but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.

2018 ◽  
Vol 217 (10) ◽  
pp. 3683-3697 ◽  
Author(s):  
Erica J. Hutchins ◽  
Marianne E. Bronner

Neural crest cells undergo a spatiotemporally regulated epithelial-to-mesenchymal transition (EMT) that proceeds head to tailward to exit from the neural tube. In this study, we show that the secreted molecule Draxin is expressed in a transient rostrocaudal wave that mirrors this emigration pattern, initiating after neural crest specification and being down-regulated just before delamination. Functional experiments reveal that Draxin regulates the timing of cranial neural crest EMT by transiently inhibiting canonical Wnt signaling. Ectopic maintenance of Draxin in the cranial neural tube blocks full EMT; while cells delaminate, they fail to become mesenchymal and migratory. Loss of Draxin results in premature delamination but also in failure to mesenchymalize. These results suggest that a pulse of intermediate Wnt signaling triggers EMT and is necessary for its completion. Taken together, these data show that transient secreted Draxin mediates proper levels of canonical Wnt signaling required to regulate the precise timing of initiation and completion of cranial neural crest EMT.


2018 ◽  
Vol 48 (2) ◽  
pp. 419-432 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Leilei Tao ◽  
Jun Yi ◽  
Haizhu Song ◽  
Longbang Chen

Radioresistance is a major obstacle in radiotherapy for cancer, and strategies are needed to overcome this problem. Currently, radiotherapy combined with targeted therapy such as inhibitors of phosphoinosotide 3-kinase/Akt and epidermal growth factor receptor signaling have become the focus of studies on radiosensitization. Apart from these two signaling pathways, which promote radioresistance, deregulation of Wnt signaling is also associated with the radioresistance of multiple cancers. Wnts, as important messengers in the tumor microenvironment, are involved in cancer progression mainly via canonical Wnt signaling. Their role in promoting DNA damage repair and inhibiting apoptosis facilitates cancer resistance to radiation. Thus, it seems reasonable to target Wnt signaling as a method for overcoming radioresistance. Many small-molecule inhibitors that target the Wnt signaling pathway have been identified and shown to promote radiosensitization. Therefore, a Wnt signaling inhibitor may help to overcome radioresistance in cancer therapy.


2013 ◽  
Vol 72 (Suppl 3) ◽  
pp. A807.1-A807
Author(s):  
M. H. van den Bosch ◽  
A. B. Blom ◽  
P. L. van Lent ◽  
H. M. van Beuningen ◽  
F. A. van de Loo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document