scholarly journals Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies

Author(s):  
Arang Rhie ◽  
Brian P. Walenz ◽  
Sergey Koren ◽  
Adam M. Phillippy

AbstractRecent long-read assemblies often exceed the quality and completeness of available reference genomes, making validation challenging. Here we present Merqury, a novel tool for reference-free assembly evaluation based on efficient k-mer set operations. By comparing k-mers in a de novo assembly to those found in unassembled high-accuracy reads, Merqury estimates base-level accuracy and completeness. For trios, Merqury can also evaluate haplotype-specific accuracy, completeness, phase block continuity, and switch errors. Multiple visualizations, such as k-mer spectrum plots, can be generated for evaluation. We demonstrate on both human and plant genomes that Merqury is a fast and robust method for assembly validation.Availability of data and materialProject name: MerquryProject home page: https://github.com/marbl/merqury, https://github.com/marbl/merylArchived version: https://github.com/marbl/merqury/releases/tag/v1.0Operating system(s): Platform independentProgramming language: C++, Java, PerlOther requirements: gcc 4.8 or higher, java 1.6 or higherLicense: Public domain (see https://github.com/marbl/merqury/blob/master/README.license) Any restrictions to use by non-academics: No restrictions applied

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Arang Rhie ◽  
Brian P. Walenz ◽  
Sergey Koren ◽  
Adam M. Phillippy

Abstract Recent long-read assemblies often exceed the quality and completeness of available reference genomes, making validation challenging. Here we present Merqury, a novel tool for reference-free assembly evaluation based on efficient k-mer set operations. By comparing k-mers in a de novo assembly to those found in unassembled high-accuracy reads, Merqury estimates base-level accuracy and completeness. For trios, Merqury can also evaluate haplotype-specific accuracy, completeness, phase block continuity, and switch errors. Multiple visualizations, such as k-mer spectrum plots, can be generated for evaluation. We demonstrate on both human and plant genomes that Merqury is a fast and robust method for assembly validation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Chen ◽  
Yixin Zhang ◽  
Amy Y. Wang ◽  
Min Gao ◽  
Zechen Chong

AbstractLong-read de novo genome assembly continues to advance rapidly. However, there is a lack of effective tools to accurately evaluate the assembly results, especially for structural errors. We present Inspector, a reference-free long-read de novo assembly evaluator which faithfully reports types of errors and their precise locations. Notably, Inspector can correct the assembly errors based on consensus sequences derived from raw reads covering erroneous regions. Based on in silico and long-read assembly results from multiple long-read data and assemblers, we demonstrate that in addition to providing generic metrics, Inspector can accurately identify both large-scale and small-scale assembly errors.


Author(s):  
Mitchell J Sullivan ◽  
Nouri L Ben Zakour ◽  
Brian M Forde ◽  
Mitchell Stanton-Cook ◽  
Scott A Beatson

Contiguity is an interactive software for the visualization and manipulation of de novo genome assemblies. Contiguity creates and displays information on contig adjacency which is contextualized by the simultaneous display of a comparison between assembled contigs and reference sequence. Where scaffolders allow unambiguous connections between contigs to be resolved into a single scaffold, Contiguity allows the user to create all potential scaffolds in ambiguous regions of the genome. This enables the resolution of novel sequence or structural variants from the assembly. In addition, Contiguity provides a sequencing and assembly agnostic approach for the creation of contig adjacency graphs. To maximize the number of contig adjacencies determined, Contiguity combines information from read pair mappings, sequence overlap and De Bruijn graph exploration. We demonstrate how highly sensitive graphs can be achieved using this method. Contig adjacency graphs allow the user to visualize potential arrangements of contigs in unresolvable areas of the genome. By combining adjacency information with comparative genomics, Contiguity provides an intuitive approach for exploring and improving sequence assemblies. It is also useful in guiding manual closure of long read sequence assemblies. Contiguity is an open source application, implemented using Python and the Tkinter GUI package that can run on any Unix, OSX and Windows operating system. It has been designed and optimized for bacterial assemblies. Contiguity is available at http://mjsull.github.io/Contiguity .


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Gokhan Yavas ◽  
Huixiao Hong ◽  
Wenming Xiao

Abstract Background Accurate de novo genome assembly has become reality with the advancements in sequencing technology. With the ever-increasing number of de novo genome assembly tools, assessing the quality of assemblies has become of great importance in genome research. Although many quality metrics have been proposed and software tools for calculating those metrics have been developed, the existing tools do not produce a unified measure to reflect the overall quality of an assembly. Results To address this issue, we developed the de novo Assembly Quality Evaluation Tool (dnAQET) that generates a unified metric for benchmarking the quality assessment of assemblies. Our framework first calculates individual quality scores for the scaffolds/contigs of an assembly by aligning them to a reference genome. Next, it computes a quality score for the assembly using its overall reference genome coverage, the quality score distribution of its scaffolds and the redundancy identified in it. Using synthetic assemblies randomly generated from the latest human genome build, various builds of the reference genomes for five organisms and six de novo assemblies for sample NA24385, we tested dnAQET to assess its capability for benchmarking quality evaluation of genome assemblies. For synthetic data, our quality score increased with decreasing number of misassemblies and redundancy and increasing average contig length and coverage, as expected. For genome builds, dnAQET quality score calculated for a more recent reference genome was better than the score for an older version. To compare with some of the most frequently used measures, 13 other quality measures were calculated. The quality score from dnAQET was found to be better than all other measures in terms of consistency with the known quality of the reference genomes, indicating that dnAQET is reliable for benchmarking quality assessment of de novo genome assemblies. Conclusions The dnAQET is a scalable framework designed to evaluate a de novo genome assembly based on the aggregated quality of its scaffolds (or contigs). Our results demonstrated that dnAQET quality score is reliable for benchmarking quality assessment of genome assemblies. The dnQAET can help researchers to identify the most suitable assembly tools and to select high quality assemblies generated.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sarah B Kingan ◽  
Julie Urban ◽  
Christine C Lambert ◽  
Primo Baybayan ◽  
Anna K Childers ◽  
...  

ABSTRACT Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


Author(s):  
Sampath Perumal ◽  
Chu Shin Koh ◽  
Lingling Jin ◽  
Miles Buchwaldt ◽  
Erin Higgins ◽  
...  

AbstractHigh-quality nanopore genome assemblies were generated for two Brassica nigra genotypes (Ni100 and CN115125); a member of the agronomically important Brassica species. The N50 contig length for the two assemblies were 17.1 Mb (58 contigs) and 0.29 Mb (963 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short read assembly for Ni100 corroborated genome integrity and quantified sequence related error rates (0.002%). The contiguity and coverage allowed unprecedented access to low complexity regions of the genome. Pericentromeric regions and coincidence of hypo-methylation enabled localization of active centromeres and identified a novel centromere-associated ALE class I element which appears to have proliferated through relatively recent nested transposition events (<1 million years ago). Computational abstraction was used to define a post-triplication Brassica specific ancestral genome and to calculate the extensive rearrangements that define the genomic distance separating B. nigra from its diploid relatives.


2020 ◽  
Author(s):  
Yuxuan Yuan ◽  
Philipp E. Bayer ◽  
Robyn Anderson ◽  
HueyTyng Lee ◽  
Chon-Kit Kenneth Chan ◽  
...  

AbstractRecent advances in long-read sequencing have the potential to produce more complete genome assemblies using sequence reads which can span repetitive regions. However, overlap based assembly methods routinely used for this data require significant computing time and resources. Here, we have developed RefKA, a reference-based approach for long read genome assembly. This approach relies on breaking up a closely related reference genome into bins, aligning k-mers unique to each bin with PacBio reads, and then assembling each bin in parallel followed by a final bin-stitching step. During benchmarking, we assembled the wheat Chinese Spring (CS) genome using publicly available PacBio reads in parallel in 168 wall hours on a 250 CPU system. The maximum RAM used was 300 Gb and the computing time was 42,000 CPU hours. The approach opens applications for the assembly of other large and complex genomes with much-reduced computing requirements. The RefKA pipeline is available at https://github.com/AppliedBioinformatics/RefKA


2021 ◽  
Author(s):  
Kishwar Shafin ◽  
Trevor Pesout ◽  
Pi-Chuan Chang ◽  
Maria Nattestad ◽  
Alexey Kolesnikov ◽  
...  

Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read based phasing. Third-generation nanopore sequence data has demonstrated a long read length, but current interpretation methods for its novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline PEPPER-Margin-DeepVariant that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single nucleotide variant identification method at the whole genome-scale and produces high-quality single nucleotide variants in segmental duplications and low-mappability regions where short-read based genotyping fails. We show that our pipeline can provide highly-contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% to 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance than the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio-HiFi-polished).


2016 ◽  
Author(s):  
Jia-Xing Yue ◽  
Jing Li ◽  
Louise Aigrain ◽  
Johan Hallin ◽  
Karl Persson ◽  
...  

AbstractStructural rearrangements have long been recognized as an important source of genetic variation with implications in phenotypic diversity and disease, yet their evolutionary dynamics are difficult to characterize with short-read sequencing. Here, we report long-read sequencing for 12 strains representing major subpopulations of the partially domesticated yeastSaccharomyces cerevisiaeand its wild relativeSaccharomyces paradoxus. Complete genome assemblies and annotations generate population-level reference genomes and allow for the first explicit definition of chromosome partitioning into cores, subtelomeres and chromosome-ends. High-resolution view of structural dynamics uncovers that, in chromosomal cores,S. paradoxusexhibits higher accumulation rate of balanced structural rearrangements (inversions, translocations and transpositions) whereasS. cerevisiaeaccumulates unbalanced rearrangements (large insertions, deletions and duplications) more rapidly. In subtelomeres, recurrent interchromosomal reshuffling was found in both species, with higher rate inS. cerevisiae. Such striking contrasts between wild and domesticated yeasts reveal the influence of human activities on structural genome evolution.


2018 ◽  
Author(s):  
Michael J Roach ◽  
Simon Schmidt ◽  
Anthony R Borneman

AbstractRecent developments in third-gen long read sequencing and diploid-aware assemblers have resulted in the rapid release of numerous reference-quality assemblies for diploid genomes. However, assembling highly heterozygous genomes is still facing a major problem where the two haplotypes for a region are highly polymorphic and the synteny is not recognised during assembly. This causes issues with downstream analysis, for example variant discovery using the haploid assembly, or haplotype reconstruction using the diploid assembly. A new pipeline—Purge Haplotigs—was developed specifically for third-gen assemblies to identify and reassign the duplicate contigs. The pipeline takes a draft haplotype-fused assembly or a diploid assembly, and read alignments to produce an improved assembly. The pipeline was tested on a simulated dataset and on four recent diploid (phased) de novo assemblies from third-generation long-read sequencing. All assemblies after processing with Purge Haplotigs were less duplicated with minimal impact on genome completeness. The software is available at https://bitbucket.org/mroachawri/purge_haplotigs under a permissive MIT licence.


Sign in / Sign up

Export Citation Format

Share Document