scholarly journals Large Freshwater Phages with the Potential to Augment Aerobic Methane Oxidation

Author(s):  
Lin-Xing Chen ◽  
Raphaël Méheust ◽  
Alexander Crits-Christoph ◽  
Katherine D. McMahon ◽  
Tara Colenbrander Nelson ◽  
...  

AbstractThere is growing evidence that phages with unusually large genomes are common across various natural and human microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. Here, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Twenty-two manually curated genomes (18 are complete) ranging from 159 to 527 kbp in length were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC show high similarity (> 90%) and affiliate phylogenetically with those of coexisting bacterial methanotrophs, and their abundance patterns correlate with the abundances of these bacteria, supporting host-phage relationships. We suggest that phage PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contribute to growth on methane. Transcriptomics data from one system showed that the phage-associated pmoC genes are actively expressed in situ. Augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this powerful greenhouse gas into the environment.

2020 ◽  
Vol 5 (12) ◽  
pp. 1504-1515 ◽  
Author(s):  
Lin-Xing Chen ◽  
Raphaël Méheust ◽  
Alexander Crits-Christoph ◽  
Katherine D. McMahon ◽  
Tara Colenbrander Nelson ◽  
...  

AbstractThere is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host–phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.


2021 ◽  
Vol 9 (2) ◽  
pp. 111
Author(s):  
Kati Lehtoranta ◽  
Päivi Koponen ◽  
Hannu Vesala ◽  
Kauko Kallinen ◽  
Teuvo Maunula

Liquefied natural gas (LNG) use as marine fuel is increasing. Switching diesel to LNG in ships significantly reduces air pollutants but the methane slip from gas engines can in the worst case outweigh the CO2 decrease with an unintended effect on climate. In this study, a methane oxidation catalyst (MOC) is investigated with engine experiments in lean-burn conditions. Since the highly efficient catalyst needed to oxidize methane is very sensitive to sulfur poisoning a regeneration using stoichiometric conditions was studied to reactivate the catalyst. In addition, the effect of a special sulfur trap to protect the MOC and ensure long-term performance for methane oxidation was studied. MOC was found to decrease the methane emission up to 70–80% at the exhaust temperature of 550 degrees. This efficiency decreased within time, but the regeneration done once a day was found to recover the efficiency. Moreover, the sulfur trap studied with MOC was shown to protect the MOC against sulfur poisoning to some extent. These results give indication of the possible use of MOC in LNG ships to control methane slip emissions.


2021 ◽  
Author(s):  
Liling Zhang ◽  
Junfei Chen ◽  
Haolin Yang ◽  
Xiaohan Wang ◽  
Zebao Rui

2017 ◽  
Vol 7 (20) ◽  
pp. 4669-4679 ◽  
Author(s):  
Zhouyang Liu ◽  
Vishnu Sriram ◽  
Can Li ◽  
Joo-Youp Lee

A mechanistic study using in situ DRIFTS and a kinetic study were conducted on a ruthenium oxide based mercury oxidation catalyst.


2016 ◽  
Vol 53 (8) ◽  
pp. 788-794
Author(s):  
Živilė Žigaitė ◽  
Alexandre Fadel ◽  
Alberto Pérez-Huerta ◽  
Teresa Jeffries ◽  
Daniel Goujet ◽  
...  

In situ rare-earth element (REE) compositions have been measured in early vertebrate microremains from the Lower Devonian basin of Andrée Land (Svalbard), with the aim of obtaining information about their early depositional environment and potential reworking. Vertebrate microremains with different histology were used for the analyses, sourced from two different localities of marginal marine to freshwater sediments from geographically distant parts of the Grey Hœk Formation (Skamdalen and Tavlefjellet members). We selected thelodont and undescribed ?chondrichthyan scales, which allowed us to define potential taxonomic, histological, and taphonomic variables of the REE uptake. Results showed REE concentrations to be relatively uniform within the scales of each taxon, but apparent discrepancies were visible between the studied localities and separate taxa. The compilation of REE abundance patterns as well as REE ratios have revealed that thelodont and ?chondrichthyan originating from the same locality must have had different burial and early diagenetic histories. The shapes of the REE profiles, together with the presence and absence of the Eu and Ce anomalies, equally suggested different depositional and diagenetic environments for these two sympatric taxa resulting from either stratigraphical or long-distance reworking. The REE concentrations appear to have visible differences between separate dental tissues, particularly between enameloid and dentine of thelodonts, emphasizing the importance of in situ measurements in microfossil biomineral geochemistry.


2018 ◽  
Vol 138 (2) ◽  
pp. 197-213 ◽  
Author(s):  
Emily Pickering Pedersen ◽  
Anders Michelsen ◽  
Bo Elberling

Sign in / Sign up

Export Citation Format

Share Document