Effect of Support Materials on Pd Methane Oxidation Catalyst Using Dynamic Estimation Method

2021 ◽  
Author(s):  
Yoshifuru Nitta ◽  
Yudai Yamasaki
Author(s):  
Yoshifuru Nitta ◽  
Yudai Yamasaki

Abstract In the maritime industry, lean burn gas engines have been expected to reduce emissions such as NOx, SOx and CO2. On the other hand, the slipped methane, which is the unburned methane (CH4) emitted from lean burn gas engines have a concern for impact on global warming. It is therefore important to make a progress on the exhaust aftertreatment technologies for lean burn gas engines. As a countermeasure for the slipped methane, Palladium (Pd) catalyst for CH4 oxidation can be expected to provide one of the most feasible methods because Palladium (Pd) catalyst for CH4 oxidation can activate in the lower temperature. However, recent studies have shown that the reversible adsorption by water vapor (H2O) inhibits CH4 oxidation on the catalyst and deactivates its CH4 oxidation capacity. It can be known that the CH4 oxidation performance is influenced by active sites on the Pd catalyst. However, measuring methods for active sites on Pd catalyst under exhaust gas conditions could not be found. Authors thus proposed a dynamic estimation method for the quantity of effective active sites on Pd catalyst in exhaust gas temperature using water-gas shift reaction between the saturated chemisorbed CO and the pulse induced H2O. The previous study clarified the relationship between adsorbed CO volume and Pd loading in gas engine exhaust gas temperature and revealed the effects of flow conditions on the estimation of adsorbed CO volume. However, in order to improve CH4 oxidation performance on Pd catalyst under exhaust gas conditions, it is important that effects of support materials on active sites should clarify. This paper introduced experimental results of estimation of absorbed CO volume on different support materials of Pd catalysts by using the dynamic evaluation method. Experimental results show that chemisorbed CO volume on Pd/Al2O3 catalyst exhibits higher chemisorbed CO volume than that of Pd/SiO2 and Pd/Al2O3-SiO2 catalyst in 250–450 °C. These results can provide a part of the criteria for the application of Pd catalyst for reducing the slipped methane in exhaust gas of lean burn gas engines.


2021 ◽  
Vol 9 (2) ◽  
pp. 111
Author(s):  
Kati Lehtoranta ◽  
Päivi Koponen ◽  
Hannu Vesala ◽  
Kauko Kallinen ◽  
Teuvo Maunula

Liquefied natural gas (LNG) use as marine fuel is increasing. Switching diesel to LNG in ships significantly reduces air pollutants but the methane slip from gas engines can in the worst case outweigh the CO2 decrease with an unintended effect on climate. In this study, a methane oxidation catalyst (MOC) is investigated with engine experiments in lean-burn conditions. Since the highly efficient catalyst needed to oxidize methane is very sensitive to sulfur poisoning a regeneration using stoichiometric conditions was studied to reactivate the catalyst. In addition, the effect of a special sulfur trap to protect the MOC and ensure long-term performance for methane oxidation was studied. MOC was found to decrease the methane emission up to 70–80% at the exhaust temperature of 550 degrees. This efficiency decreased within time, but the regeneration done once a day was found to recover the efficiency. Moreover, the sulfur trap studied with MOC was shown to protect the MOC against sulfur poisoning to some extent. These results give indication of the possible use of MOC in LNG ships to control methane slip emissions.


2010 ◽  
Vol 53 (7-10) ◽  
pp. 707-711 ◽  
Author(s):  
Kohei Urasaki ◽  
Ken-ichiro Endo ◽  
Tomoki Takahiro ◽  
Ryuji Kikuchi ◽  
Toshinori Kojima ◽  
...  

2018 ◽  
Vol 41 (6) ◽  
pp. 1571-1579 ◽  
Author(s):  
Hao Zhang ◽  
Chen Peng ◽  
Hongtao Sun ◽  
Dajun Du

This paper investigates the state estimation problem for cyber physical systems under sparse attacks. Firstly, the fundamental state estimation problem is transferred to an optimization problem with a unique solution. Secondly, an adaptive estimation method for sparse attacks is proposed, which convergence property is well proved. The advantage of proposed method is that the step-size can be adaptively adjusted based on the dynamic estimation errors. Therefore, the computing time is less than some existing methods while guaranteeing the desired performance. Then, a suitable state feedback is designed to improve the computing speed while enhancing the resiliency for the destroyed system. Finally, the speed performance and accuracy of proposed algorithm are verified by two numerical examples.


Author(s):  
Lin-Xing Chen ◽  
Raphaël Méheust ◽  
Alexander Crits-Christoph ◽  
Katherine D. McMahon ◽  
Tara Colenbrander Nelson ◽  
...  

AbstractThere is growing evidence that phages with unusually large genomes are common across various natural and human microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. Here, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Twenty-two manually curated genomes (18 are complete) ranging from 159 to 527 kbp in length were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC show high similarity (> 90%) and affiliate phylogenetically with those of coexisting bacterial methanotrophs, and their abundance patterns correlate with the abundances of these bacteria, supporting host-phage relationships. We suggest that phage PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contribute to growth on methane. Transcriptomics data from one system showed that the phage-associated pmoC genes are actively expressed in situ. Augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this powerful greenhouse gas into the environment.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Yoshifuru Nitta ◽  
Yudai Yamasaki

Abstract Lean-burn gas engines have recently attracted attention in the maritime industry, because they can reduce NOx, SOx, and CO2 emissions. However, since methane (CH4) is the main component of natural gas, the slipped methane, which is the unburned methane, likely contributes to global warming. It is thus important to make progress on exhaust after-treatment technologies for lean-burn gas engines. A Palladium (Pd) catalyst for CH4 oxidation is expected to provide a countermeasure for the slipped methane, because it can activate at lower exhaust temperature comparing with platinum. However, a de-activation in higher water (H2O) concentration should be overcome because H2O inhibits CH4 oxidation. This study was performed to investigate the effects of exhaust temperature or gas composition on active Pd catalyst sites to clarify CH4 oxidation performance in the exhaust gas of lean-burn gas engines. The authors developed the method of estimating effective active sites for the Pd catalyst at various exhaust temperatures. The estimation method is based on the assumption that active sites used for CH4 oxidation process can be shared with the active sites used for carbon mono-oxide (CO) oxidation. The molecular of chemisorbed CO on the active sites of the Pd catalyst can provide effective active sites for CH4 oxidation process. This paper introduces experimental results and verifications of the new method, showing that chemisorbed CO volume on a Pd/Al2O3 catalyst is increased with increasing Pd loading in 250–450 °C, simulated as a typical exhaust temperature range of lean-burn gas engines.


Sign in / Sign up

Export Citation Format

Share Document