scholarly journals Reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based biosensor for diagnosis of COVID-19

Author(s):  
Xiong Zhu ◽  
Xiaoxia Wang ◽  
Limei Han ◽  
Ting Chen ◽  
Licheng Wang ◽  
...  

ABSTRACTGiven the scale and rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, known as 2019-nCov) infection (COVID-19), the ongoing global SARS-CoV-2 outbreak has become a huge public health issue. Rapid and precise diagnostic methods are thus immediately needed for diagnosing COVID-19, providing timely treatment and facilitating infection control. A one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) coupled with nanoparticles-based biosensor (NBS) assay (RT-LAMP-NBS) was successfully established for rapidly and accurately diagnosing COVID-19. A simple equipment (such as heating block) was required for maintaining a constant temperature (63°C) for only 40 min. Using two designed LAMP primer sets, F1ab (opening reading frame 1a/b) and np (nucleoprotein) genes of SARS-CoV-2 were simultaneously amplified and detected in a ‘one-step’ and ‘single-tube’ reaction, and the detection results were easily interpreted by NBS. The sensitivity of SARS-CoV-2 RT-LAMP-NBS was 12 copies (each of detection target) per reaction, and no cross-reactivity was generated from non-SARS-CoV-2 templates. Among clinically diagnosed COVID-19 patients, the analytical sensitivity of SARS-CoV-2 was 100% (33/33) in the oropharynx swab samples, and the assay’s specificity was also 100% (96/96) when analyzed the clinical samples collected from non-COVID-19 patients. The total diagnosis test from sample collection to result interpretation only takes approximately 1 h. In sum, the RT-LAMP-NBS is a promising tool for diagnosing the current SARS-CoV-2 infection in first line field, public health and clinical laboratories, especially for resource-challenged regions.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Timothy S. Mamba ◽  
Cecilia K. Mbae ◽  
Johnson Kinyua ◽  
Erastus Mulinge ◽  
Gitonga Nkanata Mburugu ◽  
...  

Background. Cryptosporidiumis a protozoan parasite and a major cause of diarrhea in children and immunocompromised patients. Current diagnostic methods for cryptosporidiosis such as microscopy have low sensitivity while techniques such as PCR indicate higher sensitivity levels but are seldom used in developing countries due to their associated cost. A loop-mediated isothermal amplification (LAMP) technique, a method with shorter time to result and with equal or higher sensitivity compared to PCR, has been developed and applied in the detection ofCryptosporidiumspecies. The test has a detection limit of 10 pg/µl (~100 oocysts/ml) indicating a need for more sensitive diagnostic tools. This study developed a more sensitive lateral flow dipstick (LFD) LAMP test based on SAM-1 gene and with the addition of a second set of reaction accelerating primers (stem primers).Results. The stem LFD LAMP test showed analytical sensitivity of 10 oocysts/ml compared to 100 oocysts/ml (10 pg/ul) for each of the SAM-1 LAMP test and nested PCR. The stem LFD LAMP and nested PCR detected 29/39 and 25/39 positive samples of previously identifiedC. parvumandC. hominisDNA, respectively. The SAM-1 LAMP detected 27/39. On detection ofCryptosporidiumDNA in 67 clinical samples, the stem LFD LAMP detected 16 samples and SAM-2 LAMP 14 and nested PCR identified 11. Preheating the templates increased detection by stem LFD LAMP to 19 samples. Time to results from master mix preparation step took ~80 minutes. The test was specific, and no cross-amplification was recorded with nontarget DNA.Conclusion.The developed stem LFD LAMP test is an appropriate method for the detection ofC. hominis, C. parvum,andC. meleagridisDNA in human stool samples. It can be used in algorithm with other diagnostic tests and may offer promise as an effective diagnostic tool in the control of cryptosporidiosis.


Author(s):  
Melis N Anahtar ◽  
Graham EG McGrath ◽  
Brian A Rabe ◽  
Nathan A Tanner ◽  
Benjamin A White ◽  
...  

Amid the enduring COVID-19 pandemic, there is an urgent need for expanded access to rapid and sensitive SARS-CoV-2 testing worldwide. Here we present a simple clinical workflow that uses a sensitive and highly specific colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) to detect SARS-CoV-2 and takes forty minutes from sample collection to result. This test requires no specialized equipment and costs a few dollars per sample. Nasopharyngeal samples collected in saline were added either directly (unprocessed) to RT-LAMP reactions or first inactivated by a combined chemical and heat treatment step to inhibit RNases and lyse virions and human cells. The specimens were then amplified with two SARS-CoV-2-specific primer sets and an internal specimen control; the resulting color change was visually interpreted. While direct addition of unprocessed specimens to RT-LAMP reactions could reliably detect samples with abundant SARS-CoV-2, the assay sensitivity markedly increased after the addition of an inactivation step. In 62 clinical samples with a wide range of SARS-CoV-2 nucleic acid concentrations, the assay had 87.5% sensitivity and 100% specificity with a limit of detection at least 25 copies/μL, making it an ideal test to rule in infection. To increase sensitivity, samples that tested negative for SARS-CoV-2 by direct sample addition could be reflexed to a purification step, to increase the effective per-reaction sample input volume. In 40 purified samples, the assay yielded a 90% sensitivity and 100% specificity, with a limit of detection comparable to commercially available real-time PCR-based diagnostics that have received Emergency Use Authorization (EUA) from the FDA. This test for SARS-CoV-2 can be performed in a range of settings for a fraction of the price of other available tests, with limited equipment, and without relying on over-burdened supply chains to increase overall testing capacity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severino Jefferson Ribeiro da Silva ◽  
Keith Pardee ◽  
Udeni B. R. Balasuriya ◽  
Lindomar Pena

AbstractWe have previously developed and validated a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of the Zika virus (ZIKV) from mosquito samples. Patient diagnosis of ZIKV is currently carried out in centralized laboratories using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which, while the gold standard molecular method, has several drawbacks for use in remote and low-resource settings, such as high cost and the need of specialized equipment. Point-of-care (POC) diagnostic platforms have the potential to overcome these limitations, especially in low-resource countries where ZIKV is endemic. With this in mind, here we optimized and validated our RT-LAMP assay for rapid detection of ZIKV from patient samples. We found that the assay detected ZIKV from diverse sample types (serum, urine, saliva, and semen) in as little as 20 min, without RNA extraction. The RT-LAMP assay was highly specific and up to 100 times more sensitive than RT-qPCR. We then validated the assay using 100 patient serum samples collected from suspected cases of arbovirus infection in the state of Pernambuco, which was at the epicenter of the last Zika epidemic. Analysis of the results, in comparison to RT-qPCR, found that the ZIKV RT-LAMP assay provided sensitivity of 100%, specificity of 93.75%, and an overall accuracy of 95.00%. Taken together, the RT-LAMP assay provides a straightforward and inexpensive alternative for the diagnosis of ZIKV from patients and has the potential to increase diagnostic capacity in ZIKV-affected areas, particularly in low and middle-income countries.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Bruna de Oliveira Coelho ◽  
Heloisa Bruna Soligo Sanchuki ◽  
Dalila Luciola Zanette ◽  
Jeanine Marie Nardin ◽  
Hugo Manuel Paz Morales ◽  
...  

Abstract Background SARS-CoV-2 Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) colorimetric detection is a sensitive and specific point-of-care molecular biology technique used to detect the virus in only 30 min. In this manuscript we have described a few nuances of the technique still not properly described in the literature: the presence of three colors clusters; the correlation of the viral load with the color change; and the importance of using an internal control to avoid false-negative results. Methods To achieve these findings, we performed colorimetric RT-LAMP assays of 466 SARS-CoV-2 RT-qPCR validated clinical samples, with color quantification measured at 434 nm and 560 nm. Results First we determinate a sensitivity of 93.8% and specificity of 90.4%. In addition to the pink (negative) and yellow (positive) produced colors, we report for the first time the presence of an orange color cluster that may lead to wrong diagnosis. We also demonstrated using RT-qPCR and RT-LAMP that low viral loads are related to Ct values > 30, resulting in orange colors. We also demonstrated that the diagnosis of COVID-19 by colorimetric RT-LAMP is efficient until the fifth symptoms day when the viral load is still relatively high. Conclusion This study reports properties and indications for colorimetric RT-LAMP as point-of-care for SARS-CoV-2 diagnostic, reducing false results, interpretations and optimizing molecular diagnostics tests application.


Author(s):  
Matthew A Lalli ◽  
Joshua S Langmade ◽  
Xuhua Chen ◽  
Catrina C Fronick ◽  
Christopher S Sawyer ◽  
...  

Abstract Background Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor. Methods To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe the optimization of saliva pretreatment protocols to enable analytically sensitive viral detection by RT-LAMP. We optimized the RT-LAMP reaction conditions and implemented high-throughput unbiased methods for assay interpretation. We tested whether saliva pretreatment could also enable viral detection by conventional reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Finally, we validated these assays on clinical samples. Results The optimized saliva pretreatment protocol enabled analytically sensitive extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP or RT-qPCR. In simulated samples, the optimized RT-LAMP assay had a limit of detection of 59 (95% confidence interval: 44–104) particle copies per reaction. We highlighted the flexibility of LAMP assay implementation using 3 readouts: naked-eye colorimetry, spectrophotometry, and real-time fluorescence. In a set of 30 clinical saliva samples, colorimetric RT-LAMP and RT-qPCR assays performed directly on pretreated saliva samples without RNA extraction had accuracies greater than 90%. Conclusions Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP is a simple, sensitive, and cost-effective approach with broad potential to expand diagnostic testing for the virus causing COVID-19.


2016 ◽  
Vol 161 (5) ◽  
pp. 1359-1364 ◽  
Author(s):  
Marta Budziszewska ◽  
Przemysław Wieczorek ◽  
Aleksandra Obrępalska-Stęplowska

Sign in / Sign up

Export Citation Format

Share Document