scholarly journals Population structure in Arctic marine forests is shaped by diverse recolonisation pathways and far northern glacial refugia

2020 ◽  
Author(s):  
Trevor T. Bringloe ◽  
Heroen Verbruggen ◽  
Gary W. Saunders

AbstractThe Arctic is experiencing a rapid shift towards warmer regimes, calling for a need to understand levels of biodiversity and ecosystem responses to climate cycles. This study examines marine refugial locations during the Last Glacial Maximum in order to link recolonization pathways to patterns of genetic diversity in Arctic marine forests. We present genetic data for 109 species of seaweed to infer community-level patterns, and hindcast species distributions during the Last Glacial Maximum to further pinpoint likely refugial locations. Sequence data revealed contiguous populations extending from the Bering Sea to the Northwest Atlantic, with high levels of genetic diversity in the East Canadian Arctic. One fifth of the species sampled appeared restricted to Arctic waters. Hindcasted species distributions highlighted refugia in the Bering Sea, Northwest Atlantic, South Greenland, and Europe. We hypothesize that Arctic coastal systems were recolonized from many geographically disparate refugia leading to enriched diversity levels in the East Canadian Arctic, with important contributions stemming from northerly refugia likely centered along Southern Greenland. Moreover, we hypothesize these northerly refugia likely played a key role in promoting polar endemic diversity, as reflected by abundant unique population haplotypes and endemic species in the East Arctic.Significance StatementOur work challenges the existing paradigm that marine Arctic ecosystems are depauperate extensions of southerly (temperate) communities established in the wake of recent glaciation, fundamentally changing how these systems should be viewed and interpreted. We forward novel hypotheses regarding the recent history of Arctic marine systems, particularly with regards to endemism being an integral feature of Arctic biomes, and present a firm framework for future evolutionary research in this system typically viewed as “ecologically immature.”

2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Adrian M. Lister ◽  
Paula F. Campos ◽  
Selina Brace ◽  
Valeria Mattiangeli ◽  
...  

Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer ( Megaloceros giganteus ) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.


2021 ◽  
pp. 10-17
Author(s):  
Oguz Turkozan

A cycle of glacial and interglacial periods in the Quaternary caused species’ ranges to expand and contract in response to climatic and environmental changes. During interglacial periods, many species expanded their distribution ranges from refugia into higher elevations and latitudes. In the present work, we projected the responses of the five lineages of Testudo graeca in the Middle East and Transcaucasia as the climate shifted from the Last Glacial Maximum (LGM, Mid – Holocene), to the present. Under the past LGM and Mid-Holocene bioclimatic conditions, models predicted relatively more suitable habitats for some of the lineages. The most significant bioclimatic variables in predicting the present and past potential distribution of clades are the precipitation of the warmest quarter for T. g. armeniaca (95.8 %), precipitation seasonality for T. g. buxtoni (85.0 %), minimum temperature of the coldest month for T. g. ibera (75.4 %), precipitation of the coldest quarter for T. g. terrestris (34.1 %), and the mean temperature of the driest quarter for T. g. zarudyni (88.8 %). Since the LGM, we hypothesise that the ranges of lineages have either expanded (T. g. ibera), contracted (T. g. zarudnyi) or remained stable (T. g. terrestris), and for other two taxa (T. g. armeniaca and T. g. buxtoni) the pattern remains unclear. Our analysis predicts multiple refugia for Testudo during the LGM and supports previous hypotheses about high lineage richness in Anatolia resulting from secondary contact.


Sign in / Sign up

Export Citation Format

Share Document