scholarly journals Protein Classifier for Thyroid Nodules Learned from Rapidly Acquired Proteotypes

Author(s):  
Yaoting Sun ◽  
Sathiyamoorthy Selvarajan ◽  
Zelin Zang ◽  
Wei Liu ◽  
Yi Zhu ◽  
...  

SUMMARYUp to 30% of thyroid nodules cannot be accurately classified as benign or malignant by cytopathology. Diagnostic accuracy can be improved by nucleic acid-based testing, yet a sizeable number of diagnostic thyroidectomies remains unavoidable. In order to develop a protein classifier for thyroid nodules, we analyzed the quantitative proteomes of 1,725 retrospective thyroid tissue samples from 578 patients using pressure-cycling technology and data-independent acquisition mass spectrometry. With artificial neural networks, a classifier of 14 proteins achieved over 93% accuracy in classifying malignant thyroid nodules. This classifier was validated in retrospective samples of 271 patients (91% accuracy), and prospective samples of 62 patients (88% accuracy) from four independent centers. These rapidly acquired proteotypes and artificial neural networks supported the establishment of an effective protein classifier for classifying thyroid nodules.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4640
Author(s):  
Julian Bonello ◽  
Andrea Demarco ◽  
Iman Farhat ◽  
Lourdes Farrugia ◽  
Charles V. Sammut

Medical devices making use of radio frequency (RF) and microwave (MW) fields have been studied as alternatives to existing diagnostic and therapeutic modalities since they offer several advantages. However, the lack of accurate knowledge of the complex permittivity of different biological tissues continues to hinder progress in of these technologies. The most convenient and popular measurement method used to determine the complex permittivity of biological tissues is the open-ended coaxial line, in combination with a vector network analyser (VNA) to measure the reflection coefficient (S11) which is then converted to the corresponding tissue permittivity using either full-wave analysis or through the use of equivalent circuit models. This paper proposes an innovative method of using artificial neural networks (ANN) to convert measured S11 to tissue permittivity, circumventing the requirement of extending the VNA measurement plane to the coaxial line open end. The conventional three-step calibration technique used with coaxial open-ended probes lacks repeatability, unless applied with extreme care by experienced persons, and is not adaptable to alternative sensor antenna configurations necessitated by many potential diagnostic and monitoring applications. The method being proposed does not require calibration at the tip of the probe, thus simplifying the measurement procedure while allowing arbitrary sensor design, and was experimentally validated using S11 measurements and the corresponding complex permittivity of 60 standard liquid and 42 porcine tissue samples. Following ANN training, validation and testing, we obtained a prediction accuracy of 5% for the complex permittivity.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

2012 ◽  
Vol 3 (2) ◽  
pp. 48-50
Author(s):  
Ana Isabel Velasco Fernández ◽  
◽  
Ricardo José Rejas Muslera ◽  
Juan Padilla Fernández-Vega ◽  
María Isabel Cepeda González

Sign in / Sign up

Export Citation Format

Share Document