scholarly journals Single-molecule diffusometry reveals no catalysis-induced diffusion enhancement of alkaline phosphatase as proposed by FCS experiments

2020 ◽  
Author(s):  
Zhijie Chen ◽  
Alan Shaw ◽  
Hugh Wilson ◽  
Maxime Woringer ◽  
Xavier Darzacq ◽  
...  

ABSTRACTTheoretical and experimental observations that catalysis enhances the diffusion of enzymes have generated exciting implications about nanoscale energy flow, molecular chemotaxis and self-powered nanomachines. However, contradictory claims on the origin, magnitude, and consequence of this phenomenon continue to arise. Experimental observations of catalysis-enhanced enzyme diffusion, to date, have relied almost exclusively on fluorescence correlation spectroscopy (FCS), a technique that provides only indirect, ensemble-averaged measurements of diffusion behavior. Here, using an Anti-Brownian ELectrokinetic (ABEL) trap and in-solution spectroscopy (FCS), a technique that provides only indirect, ensemble-averaged measurements of diffusion behavior. Here, using an Anti-Brownian ELectrokinetic (ABEL) trap and in-solution single-particle tracking (SPT), we show that catalysis does not increase the diffusion of alkaline phosphatase (ALP) at the single-molecule level, in sharp contrast to the ~20% enhancement seen in parallel FCS experiments using p-nitrophenyl phosphate (pNPP) as substrate. Combining comprehensive FCS controls, ABEL trap, surface-based single-molecule fluorescence, and Monte-Carlo simulations, we establish that pNPP-induced dye blinking at the ~10 ms timescale is responsible for the apparent diffusion enhancement seen in FCS. Our observations urge a crucial revisit of various experimental findings and theoretical models––including those of our own––in the field, and indicate that in-solution SPT and ABEL trap are more reliable means to investigate diffusion phenomena at the nanoscale.SIGNIFICANCE STATEMENTRecent experiments have suggested that the energy released by a chemical reaction can propel its enzyme catalyst (for example, alkaline phosphatase, ALP). However, this topic remains controversial, partially due to the indirect and ensemble nature of existing measurements. Here, we used recently developed single-molecule approaches to monitor directly the motions of individual proteins in aqueous solution and find that single ALP enzymes do not diffuse faster under catalysis. Instead, we demonstrate that interactions between the fluorescent dye and the enzyme’s substrate can produce the signature of apparent diffusion enhancement in fluorescence correlation spectroscopy (FCS), the standard ensemble assay currently used to study enzyme diffusion and indicate that single-molecule approaches provide a more robust means to investigate diffusion at the nanoscale.

2020 ◽  
Vol 117 (35) ◽  
pp. 21328-21335
Author(s):  
Zhijie Chen ◽  
Alan Shaw ◽  
Hugh Wilson ◽  
Maxime Woringer ◽  
Xavier Darzacq ◽  
...  

Theoretical and experimental observations that catalysis enhances the diffusion of enzymes have generated exciting implications about nanoscale energy flow, molecular chemotaxis, and self-powered nanomachines. However, contradictory claims on the origin, magnitude, and consequence of this phenomenon continue to arise. To date, experimental observations of catalysis-enhanced enzyme diffusion have relied almost exclusively on fluorescence correlation spectroscopy (FCS), a technique that provides only indirect, ensemble-averaged measurements of diffusion behavior. Here, using an anti-Brownian electrokinetic (ABEL) trap and in-solution single-particle tracking, we show that catalysis does not increase the diffusion of alkaline phosphatase (ALP) at the single-molecule level, in sharp contrast to the ∼20% enhancement seen in parallel FCS experiments usingp-nitrophenyl phosphate (pNPP) as substrate. Combining comprehensive FCS controls, ABEL trap, surface-based single-molecule fluorescence, and Monte Carlo simulations, we establish thatpNPP-induced dye blinking at the ∼10-ms timescale is responsible for the apparent diffusion enhancement seen in FCS. Our observations urge a crucial revisit of various experimental findings and theoretical models––including those of our own––in the field, and indicate that in-solution single-particle tracking and ABEL trap are more reliable means to investigate diffusion phenomena at the nanoscale.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Anjali Gupta ◽  
Jagadish Sankaran ◽  
Thorsten Wohland

Abstract Fluorescence correlation spectroscopy (FCS) is a well-established single-molecule method used for the quantitative spatiotemporal analysis of dynamic processes in a wide range of samples. It possesses single-molecule sensitivity but provides ensemble averaged molecular parameters such as mobility, concentration, chemical reaction kinetics, photophysical properties and interaction properties. These parameters have been utilized to characterize a variety of soft matter systems. This review provides an overview of the basic principles of various FCS modalities, their instrumentation, data analysis, and the applications of FCS to soft matter systems.


Pteridines ◽  
2001 ◽  
Vol 12 (4) ◽  
pp. 147-153 ◽  
Author(s):  
U. Demel ◽  
Z. Foldes-Papp ◽  
D. Fuchs ◽  
G. P. Tilz

Abstract In the present investigation, fluorescence con-elation spectroscopy (FCS) was used to measure the molecular motion of the pteridine derivative neopterin. However, technical limitations in the present optical setup precluded the identification of ,single neopterin molecules. FCS measurements with a fluorophore were also can-ied out for comparison. Exemplified by rhodamine green, we have introduced a concept that allows the detection, identification and analysis of assays in solution at the single-molecule level in tenns of bulk concentration. This concept is based on FCS and Poisson distribution analysis of assay sensitivity. The molecules had not to be quantified in a more concentrated fonn, or in flow and trapping experiments. The study demonstrated an ultrasensitive, reliable, rapid and direct tool for analytics and diagnostics in solution. We discuss a possible application of our new concept in activation control of cell-mediated immunity via neopterin determination.


Sign in / Sign up

Export Citation Format

Share Document