fret biosensors
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 5)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michelina Kierzek ◽  
Parker E Deal ◽  
Evan W Miller ◽  
Shatanik Mukherjee ◽  
Dagmar Wachten ◽  
...  

Fluorescent probes that change their spectral properties upon binding to small biomolecules, ions, or changes in the membrane potential (Vm) are invaluable tools to study cellular signaling pathways. Here, we introduce a novel technique for simultaneous recording of multiple probes at millisecond time resolution: frequency- and spectrally-tuned multiplexing (FASTM). Different from present multiplexing approaches, FASTM uses phase-sensitive signal detection, which renders various combinations of common probes for Vm and ions accessible for multiplexing. Using kinetic stopped-flow fluorimetry, we show that FASTM allows simultaneous recording of rapid changes in Ca2+, pH, Na+, and Vm with high sensitivity and minimal crosstalk. FASTM is also suited for multiplexing using single-cell microscopy and genetically-encoded FRET biosensors. Moreover, FASTM is compatible with opto-chemical tools to study signaling using light. Finally, we show that the exceptional time resolution of FASTM also allows resolving rapid chemical reactions. Altogether, FASTM opens new opportunities for interrogating cellular signaling.


2021 ◽  
Author(s):  
Longwei Liu ◽  
Praopim Limsakul ◽  
Xianhui Meng ◽  
Yan Huang ◽  
Reed E. S. Harrison ◽  
...  

Abstract Genetically-encoded biosensors based on FRET have been widely used to dynamically monitor the activity of protein tyrosine kinases (PTKs) in living cell with high spatiotemporal resolution. However, the limitation in sensitivity, specificity, and dynamic range of FRET biosensors have hindered their broader applications. Here, we introduced a systematic platform, FRET-Seq, which integrates high-throughput FRET sorting and next-generation sequencing, to identify FRET biosensors with better performance from large-scale libraries directly in mammalian cells.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anthony R. Braun ◽  
Elly E. Liao ◽  
Mian Horvath ◽  
Prakriti Kalra ◽  
Karen Acosta ◽  
...  

AbstractWe have developed a high-throughput drug discovery platform, measuring fluorescence resonance energy transfer (FRET) with fluorescent alpha-synuclein (αSN) biosensors, to detect spontaneous pre-fibrillar oligomers in living cells. Our two αSN FRET biosensors provide complementary insight into αSN oligomerization and conformation in order to improve the success of drug discovery campaigns for the treatment of Parkinson’s disease. We measure FRET by fluorescence lifetime, rather than traditional fluorescence intensity, providing a structural readout with greater resolution and precision. This facilitates identification of compounds that cause subtle but significant conformational changes in the ensemble of oligomeric states that are easily missed using intensity-based FRET. We screened a 1280-compound small-molecule library and identified 21 compounds that changed the lifetime by >5 SD. Two of these compounds have nanomolar potency in protecting SH-SY5Y cells from αSN-induced death, providing a nearly tenfold improvement over known inhibitors. We tested the efficacy of several compounds in a primary mouse neuron assay of αSN pathology (phosphorylation of mouse αSN pre-formed fibrils) and show rescue of pathology for two of them. These hits were further characterized with biophysical and biochemical assays to explore potential mechanisms of action. In vitro αSN oligomerization, single-molecule FRET, and protein-observed fluorine NMR experiments demonstrate that these compounds modulate αSN oligomers but not monomers. Subsequent aggregation assays further show that these compounds also deter or block αSN fibril assembly.


2021 ◽  
Author(s):  
Ha Pham ◽  
Mona Hoseini Soflaee ◽  
Andrei V Karginov ◽  
Lawrence Miller

Rac1 is a key regulator of several cell signaling pathways and dysregulated Rac1 activation has been implicated in cancer. Genetically encoded Forster resonance energy transfer (FRET) biosensors with enhanced dynamic range enabled live cell fluorescence imaging of Rac1 activity and a cell lysate-based assay of Rac1 inhibition in 96-well plates. We prepared HEK293T cell lines that stably expressed polypeptides with a general domain sequence (N- to C-terminus) of 1) FRET acceptor; 2) Rac/Cdc42 binding domain of human p21 protein kinase A (residues 68-150); 3) a linker domain; 4) FRET donor; and 5) full-length Rac1. Activated Rac1 binds to the protein kinase A domain, bringing donors and acceptors close together to increase FRET. We evaluated the effects on FRET signal dynamic range of alpha helical linkers comprised of alternating repeats of roughly four glutamate and four arginine or lysine residues. So-called ER/K linkers had limited effects on conventional FRET biosensors that incorporated the fluorescent protein (FP) pairs mCerulean/YPet, or mTFP1(cp227)/mVenus(cp229). Fluorometric measurements of cells that co-expresssed biosensors with positive (TIAM1) or negative (RhoGDI) Rac1 regulators revealed significant dynamic range enhancement in only one FP construct (mCerulean/YPet with 20 nm ER/K linker) relative to an analogous structure that incorporated an unstructured linker. We transfected this construct into a cell line that stably expressed a rapamycin-inducible c-Src analog (RapR-Src) and observed activation of Rac1 at protruding edges following rapamycin stimulation. In cells that expressed lanthanide-based FRET (LRET biosensors) that incorporated a luminescent terbium complex donor and GFP fluorescent acceptor, time-gated luminescence (TGL) measurements showed substantial gains in dynamic range that increased with linker length (up to 1200%). We robustly detected small molecule Rac1 inhibition following lysis of LRET biosensor-expressing cells grown directly in 96-well plates. The results herein highlight the potential of FRET and LRET biosensors with ER/K linkers for cell-based imaging and screening of protein activities.


2021 ◽  
Author(s):  
Élia Mota ◽  
Ségolène Bompierre ◽  
Dahdjim Betolngar ◽  
Liliana R.V. Castro ◽  
Pierre Vincent

AbstractDopamine in the striatum plays a crucial role in reward processes and action selection. Dopamine signals are transduced by D1 and D2 dopamine receptors which trigger mirror effects through the cAMP/PKA signalling cascade in D1 and D2 medium-sized spiny neurones (MSNs). Phosphodiesterases (PDEs), which determine the profile of cAMP signals, are highly expressed in MSNs, but their respective roles in dopamine signal integration remain poorly understood. We used genetically-encoded FRET biosensors to monitor at the single cell level the functional contribution of PDE2A, PDE4 and PDE10A in the changes of the cAMP/PKA response to transient and continuous dopamine in mouse striatal brain slices. We found that PDE2A, PDE4 and PDE10A operate on the moderate to high cAMP levels elicited by D1 or A2A receptor stimulation. In contrast, only PDE10A is able to reduce cAMP down to baseline in both type of neurones, leading to the dephosphorylation of PKA substrates. PDE10A is therefore critically required for dopamine signal integration in both D1 and D2 MSNs.


2021 ◽  
Author(s):  
Suli Jia ◽  
Chengquan Wang ◽  
Jing Qian ◽  
Xingcai Zhang ◽  
Haining Cui ◽  
...  

We demonstrated a new class of 2D nanosheet-based FRET biosensors utilizing vertically oriented MoS2 nanosheets on magnetic nanocarrier. Compared with non-separated biosensor at identical conditions, this upgraded one can avoid...


Author(s):  
Longwei Liu ◽  
Fangchao He ◽  
Yiyan Yu ◽  
Yingxiao Wang
Keyword(s):  

2020 ◽  
Vol 168 ◽  
pp. 112571
Author(s):  
De-Ming Yang ◽  
Tsai-Feng Fu ◽  
Choun-Sea Lin ◽  
Tai-Yu Chiu ◽  
Chien-Chang Huang ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hiromi Imamura ◽  
Shuichiro Sakamoto ◽  
Tomoki Yoshida ◽  
Yusuke Matsui ◽  
Silvia Penuela ◽  
...  

ATP is essential for all living cells. However, how dead cells lose ATP has not been well investigated. In this study, we developed new FRET biosensors for dual imaging of intracellular ATP level and caspase-3 activity in single apoptotic cultured human cells. We show that the cytosolic ATP level starts to decrease immediately after the activation of caspase-3, and this process is completed typically within 2 hr. The ATP decrease was facilitated by caspase-dependent cleavage of the plasma membrane channel pannexin-1, indicating that the intracellular decrease of the apoptotic cell is a ‘programmed’ process. Apoptotic cells deficient of pannexin-1 sustained the ability to produce ATP through glycolysis and to consume ATP, and did not stop wasting glucose much longer period than normal apoptotic cells. Thus, the pannexin-1 plays a role in arresting the metabolic activity of dead apoptotic cells, most likely through facilitating the loss of intracellular ATP.


2020 ◽  
Author(s):  
Hiromi Imamura ◽  
Shuichiro Sakamoto ◽  
Tomoki Yoshida ◽  
Yusuke Matsui ◽  
Silvia Penuela ◽  
...  

AbstractATP is essential for all living cells. However, how dead cells lose ATP has not been well investigated. In this study, we developed new FRET biosensors for dual imaging of intracellular ATP level and caspase-3 activity in single apoptotic cultured human cells. We show that the cytosolic ATP level starts to decrease immediately after the activation of caspase-3, and this process is completed typically within 2 hours. The ATP decrease was facilitated by caspase-dependent cleavage of the plasma membrane channel pannexin-1, indicating that the intracellular decrease of the apoptotic cell is a “programmed” process. Apoptotic cells deficient of pannexin-1 sustained the ability to produce ATP through glycolysis and to consume ATP, and did not stop wasting glucose much longer period than normal apoptotic cells. Thus, the pannexin-1 plays a role in arresting the metabolic activity of dead apoptotic cells, most likely through facilitating the loss of intracellular ATP. (148 words)


Sign in / Sign up

Export Citation Format

Share Document