scholarly journals Sequence-dependent correlated segments in the intrinsically disordered region of ChiZ

2020 ◽  
Author(s):  
Alan Hicks ◽  
Cristian A. Escobar ◽  
Timothy A. Cross ◽  
Huan-Xiang Zhou

AbstractIntrinsically disordered proteins (IDPs) account for a significant fraction of any proteome and are central to numerous cellular functions. Yet how sequences of IDPs code for their conformational dynamics is poorly understood. Here we combined NMR spectroscopy, small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations to characterize the conformations and dynamics of ChiZ1-64. This IDP is the N-terminal fragment (residues 1-64) of the transmembrane protein ChiZ, a component of the cell division machinery in Mycobacterium tuberculosis. Its N-half contains most of the prolines and all of the anionic residues while the C-half most of the glycines and cationic residues. MD simulations, first validated by SAXS and secondary chemical shift data, found scant α-helices or β-strands but considerable propensity for polyproline II (PPII) torsion angles. Importantly, several blocks of residues (e.g., 11-29) emerge as “correlated segments”, identified by frequent formation of PPII stretches, salt bridges, cation-π interactions, and sidechain-backbone hydrogen bonds. NMR relaxation experiments showed non-uniform transverse relaxation rates (R2s) and nuclear Overhauser enhancements (NOEs) along the sequence (e.g., high R2s and NOEs for residues 11-14 and 23-28). MD simulations further revealed that the extent of segmental correlation is sequence-dependent: segments where internal interactions are more prevalent manifest elevated “collective” motions on the 5-10 ns timescale and suppressed local motions on the sub-ns timescale. Amide proton exchange rates provides corroboration, with residues in the most correlated segment exhibiting the highest protection factors. We propose correlated segment as a defining feature for the conformation and dynamics of IDPs.

Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 946 ◽  
Author(s):  
Alan Hicks ◽  
Cristian Escobar ◽  
Timothy Cross ◽  
Huan-Xiang Zhou

How sequences of intrinsically disordered proteins (IDPs) code for their conformational dynamics is poorly understood. Here, we combined NMR spectroscopy, small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations to characterize the conformations and dynamics of ChiZ1-64. MD simulations, first validated by SAXS and secondary chemical shift data, found scant α-helices or β-strands but a considerable propensity for polyproline II (PPII) torsion angles. Importantly, several blocks of residues (e.g., 11–29) emerge as “correlated segments”, identified by their frequent formation of PPII stretches, salt bridges, cation-π interactions, and sidechain-backbone hydrogen bonds. NMR relaxation experiments showed non-uniform transverse relaxation rates (R2s) and nuclear Overhauser enhancements (NOEs) along the sequence (e.g., high R2s and NOEs for residues 11–14 and 23–28). MD simulations further revealed that the extent of segmental correlation is sequence-dependent; segments where internal interactions are more prevalent manifest elevated “collective” motions on the 5–10 ns timescale and suppressed local motions on the sub-ns timescale. Amide proton exchange rates provides corroboration, with residues in the most correlated segment exhibiting the highest protection factors. We propose the correlated segment as a defining feature for the conformations and dynamics of IDPs.


2018 ◽  
Vol 115 (8) ◽  
pp. E1710-E1719 ◽  
Author(s):  
Sandeep Chhabra ◽  
Patrick Fischer ◽  
Koh Takeuchi ◽  
Abhinav Dubey ◽  
Joshua J. Ziarek ◽  
...  

Studies over the past decade have highlighted the functional significance of intrinsically disordered proteins (IDPs). Due to conformational heterogeneity and inherent dynamics, structural studies of IDPs have relied mostly on NMR spectroscopy, despite IDPs having characteristics that make them challenging to study using traditional 1H-detected biomolecular NMR techniques. Here, we develop a suite of 3D 15N-detected experiments that take advantage of the slower transverse relaxation property of 15N nuclei, the associated narrower linewidth, and the greater chemical shift dispersion compared with those of 1H and 13C resonances. The six 3D experiments described here start with aliphatic 1H magnetization to take advantage of its higher initial polarization, and are broadly applicable for backbone assignment of proteins that are disordered, dynamic, or have unfavorable amide proton exchange rates. Using these experiments, backbone resonance assignments were completed for the unstructured regulatory domain (residues 131–294) of the human transcription factor nuclear factor of activated T cells (NFATC2), which includes 28 proline residues located in functionally important serine–proline (SP) repeats. The complete assignment of the NFATC2 regulatory domain enabled us to study phosphorylation of NFAT by kinase PKA and phosphorylation-dependent binding of chaperone protein 14-3-3 to NFAT, providing mechanistic insight on how 14-3-3 regulates NFAT nuclear translocation.


Author(s):  
Helene Launay ◽  
Hui Shao ◽  
Olivier Bornet ◽  
Francois-Xavier Cantrelle ◽  
Regine Lebrun ◽  
...  

In the chloroplast, Calvin-Benson-Bassham enzymes are active in the reducing environment imposed in the light via the electrons from the photosystems. In the dark these enzymes are inhibited, and this regulation is mainly mediated via oxidation of key regulatory cysteine residues. CP12 is a small protein that plays a role in this regulation with four cysteine residues that undergo a redox transition. Using amide-proton exchange with solvent measured by nuclear magnetic resonance (NMR) and mass-spectrometry, we confirmed that reduced CP12 is intrinsically disordered. Using real-time NMR, we showed that the oxidation of the two disulfide bridges are simultaneous. In oxidized CP12, the C23-C31 pair is in a region that undergoes a conformational exchange in the NMR-intermediate timescale. The C66-C75 pair is in the C-terminus that folds into a stable helical turn. We confirmed that these structural states exist in a physiologically relevant environment that is, in cell extract from Chlamydomonas reinhardtii. Consistent with these structural equilibria, the reduction is slower for the C66-C75 pair compared to the C23-C31 pair. Finally, the redox mid-potentials for the two cysteine pairs differ and are similar to those found for phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase, that we relate to the regulatory role of CP12.


2021 ◽  
Author(s):  
Pétur O. Heidarsson ◽  
Ciro Cecconi

Abstract Single-molecule manipulation with optical tweezers has uncovered macromolecular behaviour hidden to other experimental techniques. Recent instrumental improvements have made it possible to expand the range of systems accessible to optical tweezers. Beyond focusing on the folding and structural changes of isolated single molecules, optical tweezers studies have evolved into unraveling the basic principles of complex molecular processes such as co-translational folding on the ribosome, kinase activation dynamics, ligand–receptor binding, chaperone-assisted protein folding, and even dynamics of intrinsically disordered proteins (IDPs). In this mini-review, we illustrate the methodological principles of optical tweezers before highlighting recent advances in studying complex protein conformational dynamics – from protein synthesis to physiological function – as well as emerging future issues that are beginning to be addressed with novel approaches.


Biomolecules ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Xingcheng Lin ◽  
Prakash Kulkarni ◽  
Federico Bocci ◽  
Nicholas Schafer ◽  
Susmita Roy ◽  
...  

Folded proteins show a high degree of structural order and undergo (fairly constrained) collective motions related to their functions. On the other hand, intrinsically disordered proteins (IDPs), while lacking a well-defined three-dimensional structure, do exhibit some structural and dynamical ordering, but are less constrained in their motions than folded proteins. The larger structural plasticity of IDPs emphasizes the importance of entropically driven motions. Many IDPs undergo function-related disorder-to-order transitions driven by their interaction with specific binding partners. As experimental techniques become more sensitive and become better integrated with computational simulations, we are beginning to see how the modest structural ordering and large amplitude collective motions of IDPs endow them with an ability to mediate multiple interactions with different partners in the cell. To illustrate these points, here, we use Prostate-associated gene 4 (PAGE4), an IDP implicated in prostate cancer (PCa) as an example. We first review our previous efforts using molecular dynamics simulations based on atomistic AWSEM to study the conformational dynamics of PAGE4 and how its motions change in its different physiologically relevant phosphorylated forms. Our simulations quantitatively reproduced experimental observations and revealed how structural and dynamical ordering are encoded in the sequence of PAGE4 and can be modulated by different extents of phosphorylation by the kinases HIPK1 and CLK2. This ordering is reflected in changing populations of certain secondary structural elements as well as in the regularity of its collective motions. These ordered features are directly correlated with the functional interactions of WT-PAGE4, HIPK1-PAGE4 and CLK2-PAGE4 with the AP-1 signaling axis. These interactions give rise to repeated transitions between (high HIPK1-PAGE4, low CLK2-PAGE4) and (low HIPK1-PAGE4, high CLK2-PAGE4) cell phenotypes, which possess differing sensitivities to the standard PCa therapies, such as androgen deprivation therapy (ADT). We argue that, although the structural plasticity of an IDP is important in promoting promiscuous interactions, the modulation of the structural ordering is important for sculpting its interactions so as to rewire with agility biomolecular interaction networks with significant functional consequences.


2020 ◽  
Author(s):  
Franziska Zosel ◽  
Andrea Holla ◽  
Benjamin Schuler

Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. Here we describe the practical details of a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.<br>


Author(s):  
Kundlik Gadhave ◽  
Prateek Kumar ◽  
Ankur Kumar ◽  
Taniya Bhardwaj ◽  
Neha Garg ◽  
...  

AbstractThe intrinsically disordered proteins/regions (IDPs/IDPRs) are known to be responsible for multiple cellular processes and are associated with many chronic diseases. In viruses, the existence of disordered proteome is also proven and are related with its conformational dynamics inside the host. The SARS-CoV-2 virus has a large proteome, in which, structure and functions of many proteins are not known as of yet. Previously, we have investigated the dark proteome of SARS-CoV-2. However, the disorder status of non-structural protein 11 (nsp11) was not possible because of very small in size, just 13 amino acid long, and for most of the IDP predictors, the protein size should be at least 30 amino acid long. Also, the structural dynamics and function status of nsp11 was not known. Hence, we have performed extensive experimentation on nsp11. Our results, based on the Circular dichroism spectroscopy gives characteristic disordered spectrum for IDPs. Further, we investigated the conformational behaviour of nsp11 in the presence of membrane mimetic environment, alpha helix inducer, and natural osmolyte. In the presence of negatively charged and neutral liposomes, nsp11 remains disordered. However, with SDS micelle, it adopted an α-helical conformation, suggesting the helical propensity of nsp11. At the end, we again confirmed the IDP behaviour of nsp11 using molecular dynamics simulations.


2019 ◽  
Author(s):  
Joao Victor de Souza Cunha ◽  
Francesc Sabanes Zariquiey ◽  
Agnieszka K. Bronowska

Intrinsically disordered proteins (IDPs) are molecules without a fixed tertiary structure, exerting crucial roles in cellular signalling, growth and molecular recognition events. Due to their high plasticity, IDPs are very challenging in experimental and computational structural studies. To provide detailed atomic insight in IDPs dynamics governing its functional mechanisms, all-atom molecular dynamics (MD) simulations are widely employed. However, the current generalist force fields and solvent models are unable to generate satisfactory ensembles for IDPs when compared to existing experimental data. In this work, we present a new solvation model, denoted as Charge-Augmented 3 Point Water model for Intrinsically-disordered Proteins (CAIPi3P). CAIPi3P has been generated by performing a systematic scanning of atomic partial charges assigned to the widely popular molecular scaffold of the three-point TIP3P water model. We found that explicit solvent MD simulations employing CAIPi3P solvation considerably improved the SAXS scattering profiles for three different IDPs. Not surprisingly, this improvement was further enhanced by using CAIPi3P water in combination with the protein force field parametrized for IDPs. We have also demonstrated applicability of CAIPi3P to molecular systems containing structured as well as intrinsically disordered regions/domains. Our results highlight the crucial importance of solvent effects for generating molecular ensembles of IDPs which reproduce the experimental data available. Hence, we conclude that our newly developed CAIPi3P solvation model is a valuable tool assisting molecular simulations of intrinsically disordered proteins and assessing their molecular dynamics.


2019 ◽  
Author(s):  
Lisa M. Pietrek ◽  
Lukas S. Stelzl ◽  
Gerhard Hummer

AbstractIntrinsically disordered proteins (IDPs) constitute a large fraction of the human proteome and are critical in the regulation of cellular processes. A detailed understanding of the conformational dynamics of IDPs could help to elucidate their roles in health and disease. However the inherent flexibility of IDPs makes structural studies and their interpretation challenging. Molecular dynamics (MD) simulations could address this challenge in principle, but inaccuracies in the simulation models and the need for long simulations have stymied progress. To overcome these limitations, we adopt an hierarchical approach that builds on the “flexible meccano” model of Bernadó et al. (J. Am. Chem. Soc. 2005, 127, 17968-17969). First, we exhaustively sample small IDP fragments in all-atom simulations to capture local structure. Then, we assemble the fragments into full-length IDPs to explore the stereochemically possible global structures of IDPs. The resulting ensembles of three-dimensional structures of full-length IDPs are highly diverse, much more so than in standard MD simulation. For the paradigmatic IDP α-synuclein, our ensemble captures both local structure, as probed by nuclear magnetic resonance (NMR) spectroscopy, and its overall dimension, as obtained from small-angle X-ray scattering (SAXS) in solution. By generating representative and meaningful starting ensembles, we can begin to exploit the massive parallelism afforded by current and future high-performance computing resources for atomic-resolution characterization of IDPs.


Sign in / Sign up

Export Citation Format

Share Document