scholarly journals Lineage-specific diversification in the usage of D-glutamate and D-aspartate in early-branching metazoans

2020 ◽  
Author(s):  
Leonid L. Moroz ◽  
Dosung Sohn ◽  
Daria Y. Romanova ◽  
Andrea B. Kohn

AbstractD-amino acids are unique and essential signaling molecules in neural, hormonal, and immune systems. However, the presence of D-amino acids and their recruitment in early animals is mostly unknown due to limited information about prebilaterian metazoans. Here, we performed the comparative survey of L-/D-aspartate and L-/D-glutamate in representatives of four phyla of basal Metazoa: cnidarians (Aglantha); placozoans (Trichoplax), sponges (Sycon) and ctenophores (Pleurobrachia, Mnemiopsis, Bolinopsis, and Beroe), which are descendants of ancestral animal lineages distinct from Bilateria. Specifically, we used high-performance capillary electrophoresis for microchemical assays and quantification of the enantiomers. L-glutamate and L-aspartate were abundant analytes in all species studied. However, we showed that the placozoans, cnidarians, and sponges had high micromolar concentrations of D-aspartate, whereas D-glutamate was not detectable. In contrast, we found that in ctenophores, D-glutamate was the dominant enantiomer with no or trace amounts of D-aspartate. This situation illuminates prominent lineage-specific diversifications in the recruitment of D-amino acids and suggests distinct signaling functions of these molecules early in the animal evolution. We also hypothesize that a deep ancestry of such recruitment events might provide some constraints underlying the evolution of neural and other signaling systems in Metazoa.HighlightsD-amino acids are essential for intercellular signaling and evolutionEnantiomers have been quantified in early-branching animalsLineage-specific recruitment of D-glutamate could occur in ctenophoresD-aspartate is one of the primary enantiomers in other metazoansDeep ancestry of such events could provide constraints in the evolution of signalingGraphical AbstractD-amino acids are essential for intercellular signaling. Direct microchemical quantification of enantiomers in representatives of early-branching animals suggests lineage-specific recruitments of D-glutamate and D-aspartate. Deep ancestry of such events might provide some constraints underlying the evolution of neural and other signaling systems in Metazoa.

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 112
Author(s):  
Monika Bielecka ◽  
Bartosz Pencakowski ◽  
Marta Stafiniak ◽  
Klemens Jakubowski ◽  
Mehdi Rahimmalek ◽  
...  

Subgenus Perovskia of the extended genus of Salvia comprises several Central Asian medicinal and aromatic species, of which S. yangii and S. abrotanoides are the most widespread. These plants are cultivated in Europe as robust ornamentals, and several cultivars are available. However, their medicinal potential remains underutilized because of limited information about their phytochemical and genetic diversity. Thus, we combined an ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) based metabolomics with DNA barcoding approach based on trnH-psbA and ITS2 barcodes to clarify the relationships between these two taxa. Metabolomic analysis demonstrated that aerial parts are more similar than roots and none of the major compounds stand out as distinct. Sugiol in S. yangii leaves and carnosic acid quinone in S. abrotanoides were mostly responsible for their chemical differentiation, whereas in roots the distinction was supported by the presence of five norditerpenoids in S. yangii and two flavonoids and one norditerpenoid in S. abrotanoides. To verify the metabolomics-based differentiation, we performed DNA authentication that revealed S. yangii and S. abrotanoides to be very closely related but separate species. We demonstrated that DNA barcoding coupled with parallel LC-MS profiling constitutes a powerful tool in identification of taxonomically close Salvia species.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 321
Author(s):  
Maria Orfanoudaki ◽  
Anja Hartmann ◽  
Julia Mayr ◽  
Félix L. Figueroa ◽  
Julia Vega ◽  
...  

This study presents the validation of a high-performance liquid chromatography diode array detector (HPLC-DAD) method for the determination of different mycosporine-like amino acids (MAAs) in the red alga Bostrychia scorpioides. The investigated MAAs, named bostrychines, have only been found in this specific species so far. The developed HPLC-DAD method was successfully applied for the quantification of the major MAAs in Bostrychia scorpioides extracts, collected from four different countries in Europe showing only minor differences between the investigated samples. In the past, several Bostrychia spp. have been reported to include cryptic species, and in some cases such as B. calliptera, B. simpliciuscula, and B. moritziana, the polyphyly was supported by differences in their MAA composition. The uniformity in the MAA composition of the investigated B. scorpioides samples is in agreement with the reported monophyly of this Bostrychia sp.


Sign in / Sign up

Export Citation Format

Share Document