scholarly journals DNA extraction and sequencing of the Mawangdui ancient cadaver protected by formalin

2020 ◽  
Author(s):  
Hua-Lin Huang ◽  
Shikui Yin ◽  
Huifang Zhao ◽  
Chao Tian ◽  
Jufang Huang ◽  
...  

AbstractMawangdui ancient Cadaver is the first wet corpse found in the world, which is famous for being immortal for over two thousands of years. After being unearthed, the female corpse was immersed in the formalin protective solution for more than 40 years. We used magnetic bead method and formalin fixed paraffing (FFPE) method to extract the DNA of the female corpse, respectively. PCR amplification, sanger sequencing, library building, high throughput sequencing (testing) and data processing were carried out on the DNA samples, and about 0.5% of the whole genome coverage sequencing data was obtained. Comparing the results of DNA trough two extraction and sequencing methods. We found that the FFPE and high throughput sequencing methods is better than others for DNA extraction of the ancient samples which were preserved in formalin, providing a guidance for dealing with formalin preserved ancient samples in the future.

2019 ◽  
Author(s):  
Justin D. Silverman ◽  
Rachael J. Bloom ◽  
Sharon Jiang ◽  
Heather K. Durand ◽  
Sayan Mukherjee ◽  
...  

AbstractPCR amplification plays a central role in the measurement of mixed microbial communities via high-throughput sequencing. Yet PCR is also known to be a common source of bias in microbiome data. Here we present a paired modeling and experimental approach to characterize and mitigate PCR bias in microbiome studies. We use experimental data from mock bacterial communities to validate our approach and human gut microbiota samples to characterize PCR bias under real-world conditions. Our results suggest that PCR can bias estimates of microbial relative abundances by a factor of 2-4 but that this bias can be mitigated using simple Bayesian multinomial logistic-normal linear models.Author summaryHigh-throughput sequencing is often used to profile host-associated microbial communities. Many processing steps are required to transform a community of bacteria into a pool of DNA suitable for sequencing. One important step is amplification where, to create enough DNA for sequencing, DNA from many different bacteria are repeatedly copied using a technique called Polymerase Chain Reaction (PCR). However, PCR is known to introduce bias as DNA from some bacteria are more efficiently copied than others. Here we introduce an experimental procedure that allows this bias to be measured and computational techniques that allow this bias to be mitigated in sequencing data.


Author(s):  
E.V. Korneenko ◽  
◽  
А.E. Samoilov ◽  
I.V. Artyushin ◽  
M.V. Safonova ◽  
...  

In our study we analyzed viral RNA in bat fecal samples from Moscow region (Zvenigorod district) collected in 2015. To detect various virus families and genera in bat fecal samples we used PCR amplification of viral genome fragments, followed by high-throughput sequencing. Blastn search of unassembled reads revealed the presence of viruses from families Astroviridae, Coronaviridae and Herpesviridae. Assembly using SPAdes 3.14 yields contigs of length 460–530 b.p. which correspond to genome fragments of Coronaviridae and Astroviridae. The taxonomy of coronaviruses has been determined to the genus level. We also showed that one bat can be a reservoir of several virus genuses. Thus, the bats in the Moscow region were confirmed as reservoir hosts for potentially zoonotic viruses.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dan Edward Veloso Villamor ◽  
Karen E Keller ◽  
Robert Martin ◽  
Ioannis Emmanouil Tzanetakis

A comprehensive study comparing virus detection between high throughput sequencing (HTS) and standard protocols in 30 berry selections (12 Fragaria, 10 Vaccinium and 8 Rubus) with known virus profiles was completed. The study examined temporal detection of viruses at four sampling times encompassing two growing seasons. Within the standard protocols, RT-PCR proved better than biological indexing. Detection of known viruses by HTS and RT-PCR nearly mirrored each other. HTS provided superior detection compared to RT-PCR on a wide spectrum of virus variants and discovery of novel viruses. More importantly, in most cases where the two protocols showed parallel virus detection, 11 viruses in 16 berry selections were not consistently detected by both methods at all sampling points. Based on these data we propose a four sampling times/two-year testing requirement for berry and potentially other crops to ensure that no virus remains undetected independent of titer, distribution or other virus/virus or virus/host interactions.


MycoKeys ◽  
2018 ◽  
Vol 39 ◽  
pp. 29-40 ◽  
Author(s):  
Sten Anslan ◽  
R. Henrik Nilsson ◽  
Christian Wurzbacher ◽  
Petr Baldrian ◽  
Leho Tedersoo ◽  
...  

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.


Genomics ◽  
2017 ◽  
Vol 109 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Yan Guo ◽  
Yulin Dai ◽  
Hui Yu ◽  
Shilin Zhao ◽  
David C. Samuels ◽  
...  

2019 ◽  
Author(s):  
Elena Nabieva ◽  
Satyarth Mishra Sharma ◽  
Yermek Kapushev ◽  
Sofya K. Garushyants ◽  
Anna V. Fedotova ◽  
...  

AbstractHigh-throughput sequencing of fetal DNA is a promising and increasingly common method for the discovery of all (or all coding) genetic variants in the fetus, either as part of prenatal screening or diagnosis, or for genetic diagnosis of spontaneous abortions. In many cases, the fetal DNA (from chorionic villi, amniotic fluid, or abortive tissue) can be contaminated with maternal cells, resulting in the mixture of fetal and maternal DNA. This maternal cell contamination (MCC) undermines the assumption, made by traditional variant callers, that each allele in a heterozygous site is covered, on average, by 50% of the reads, and therefore can lead to erroneous genotype calls. We present a panel of methods for reducing the genotyping error in the presence of MCC. All methods start with the output of GATK HaplotypeCaller on the sequencing data for the (contaminated) fetal sample and both of its parents, and additionally rely on information about the MCC fraction (which itself is readily estimated from the high-throughput sequencing data). The first of these methods uses a Bayesian probabilistic model to correct the fetal genotype calls produced by MCC-unaware HaplotypeCaller. The other two methods “learn” the genotype-correction model from examples. We use simulated contaminated fetal data to train and test the models. Using the test sets, we show that all three methods lead to substantially improved accuracy when compared with the original MCC-unaware HaplotypeCaller calls. We then apply the best-performing method to three chorionic villus samples from spontaneously terminated pregnancies.Code and training data availabilityhttps://github.com/bazykinlab/ML-maternal-cell-contamination


2021 ◽  
Vol 4 ◽  
Author(s):  
Valentin Vasselon ◽  
Éva Ács ◽  
Salomé Almeida ◽  
Karl Andree ◽  
Laure Apothéloz-Perret-Gentil ◽  
...  

During the past decade genetic approaches have been developed to monitor biodiversity in aquatic ecosystems. These enable access to taxonomic and genetic information from biological communities using DNA from environmental samples (e.g. water, biofilm, soil) and methods based on high-throughput sequencing technologies, such as DNA metabarcoding. Within the context of the Water Framework Directive (WFD), such approaches could be applied to assess Biological Quality Elements (BQE). These are used as indicators of the ecological status of aquatic ecosystems as part of national monitoring programs of the european network of 110,000 surface water monitoring sites with 79.5% rivers and 11% lake sites (Charles et al. 2020). A high-throughput method has the potential to increase our spatio-temporal monitoring capacity and to accelerate the transfer of information to water managers with the aim to increase protection of aquatic ecosystems. Good progress has been made with developing DNA metabarcoding approaches for benthic diatom assemblages. Technological innovation and protocol optimization have allowed robust taxonomic (species) and genetic (OTU, ESV) information to be obtained from which diatom quality indices can be calculated to infer ecological status to rivers and lakes. Diatom DNA metabarcoding has been successfully applied for biomonitoring at the scale of national river monitoring networks in several countries around the world and can now be considered technically ready for routine application (e.g. Apothéloz-Perret-Gentil et al. 2017, Bailet et al. 2019, Mortágua et al. 2019, Vasselon et al. 2019, Kelly et al. 2020, Pérez-Burillo et al. 2020, Pissaridou et al. 2021). However, protocols and methods used by each laboratory still vary between and within countries, limiting their operational transferability and the ability to compare results. Thus, routine use of DNA metabarcoding for diatom biomonitoring requires standardization of all steps of the metabarcoding procedure, from the sampling to the final ecological status assessment in order to define good practices and standards. Following previous initiatives which resulted in a CEN technical report for biofilm sampling and preservation (CEN 2018), a set of experiments was initiated during the DNAqua-Net WG2 diatom workshop (Cyprus, 2019) to focus on DNA extraction and PCR amplification steps in order to evaluate: i) the transferability and reproducibility of a protocol between different laboratories; ii) the variability introduced by different protocols currently applied by the scientific community. 19 participants from 14 countries performed DNA extraction and PCR amplification in parallel, using i) the same fixed protocol and ii) their own protocol. Experiments were performed by each participant on a set of standardized DNA and biofilm samples (river, lake, mock community). In order to specifically test the variability of DNA extraction and PCR amplification steps, all other steps of the metabarcoding process were fixed and the preparation of the Miseq sequencing was performed by only one laboratory. The variability within and between participants will be evaluated on DNA extracts quantity, taxonomic (genus, species) and genetic richness, community structure comparison and diatom quality index scores (IPS). We will also evaluate the variability introduced by different DNA extraction and PCR amplification protocols on diatom quality index scores and the final ecological status assessment. The results from this collaborative work will not serve to define “one protocol to rule them all”, but will provide valuable information to define guidelines and minimum requirements that should be considered when performing diatom metabarcoding for biomonitoring.


Sign in / Sign up

Export Citation Format

Share Document