scholarly journals Clinical and biomarker changes in sporadic Alzheimer’s disease

2020 ◽  
Author(s):  
Junjie Zhuo ◽  
Yuanchao Zhang ◽  
Bing Liu ◽  
Yong Liu ◽  
Xiaoqing Zhou ◽  
...  

AbstractIMPORTANCEThe dynamic changes of biomarkers and clinical profiles in sporadic Alzheimer’s disease (SAD) are poorly understood.OBJECTIVETo evaluate the impact of amyloid-β (Aβ) biomarkers on SAD by measuring the dynamic changes in biomarkers and clinical profiles in the progression of SAD.DESIGN AND SETTINGThis retrospective and longitudinal study analyzed clinical and biomarker data from 665 participants (mean follow-up 4.90 ± 2.83 years) from a subset of the AD Neuroimaging Initiative (ADNI) participants collected from August 2005 to December 2018. By aligning the timing of the changes in the various biomarkers with the stable normal cognition (CN) baseline and mild cognitive impairment (MCI) or AD onset timepoints, we combined data from the stable CN, CN conversion to MCI (CN2MCI), and MCI conversion to AD (MCI2AD) groups to identify the trajectories associated with the progression of AD.PARTICIPANTSThe participants were 294 CN, 69 CN2MCI, 300 MCI2AD, and 24 who converted from CN to MCI to AD (CN2MCI2AD) (of whom 22 were also included in the CN2MCI).EXPOSURESAmyloid-β measured by florbetapir positron emission tomography (PET) or cerebrospinal fluid assay of amyloid-β (CSF Aβ42).MAIN OUTCOMES AND MEASURESThe measures included the 13-item cognitive subscale of the AD Assessment Scale (ADAS13, as a clinical measure), hippocampal volume, and the fluorodeoxyglucose (FDG) PET standardized uptake value ratio (SUVR).RESULTSThe CN, CN2MCI, and MCI2AD subgroups’ median (interquartile range [IQR]) annual changes in ADAS13 were (0.388 [−0.278, 0.818], 1.000 [0.239, 2.330], and 3.388 [1.750, 6.169]). The annual changes in hippocampal volume for each group were (−0.005 %ICV [−0.011, −0.001], −0.006 %ICV [−0.012, −0.002], and −0.014 %ICV [−0.021, −0.009]). The annual changes in FDG PET SUVR for each group were (−0.011 [−0.030, 0.010], −0.027 [−0.056, −0.012], and −0.039 [−0.063, 0.014]). Changes in the amyloid biomarkers were inconsistent with clinical profile changes. The annual changes in CSF Aβ42 for each group were (−1.500 pg/ml [−6.000, 4.000], −2.200 [−5.667, 4.000], and −2.000 [−7.000, 2.650]) and in Aβ PET SUVR for each group were (0.004 [−0.002, 0.012], 0.004 [−0.001,0.011], and 0.005 [−0.006, 0.014]). During the stable CN and CN2MCI stages, subjects with elevated and those with normal amyloid showed no significant differences (likelihood ratio test, p < .01) in clinical measures, hippocampal volume, or FDG.CONCLUSIONS AND RELEVANCEHippocampal volume and FDG associated with clinical profiles impairment in the SAD progression. Aβ alone is not associated with clinical profiles, hippocampal volume, and FDG impairment in the preclinical stage of SAD.Key PointsQuestion: What is the role of amyloid-β in dynamic changes in biomarkers and clinical profiles in the progression of sporadic Alzheimer’s disease?Findings: The changes of the hippocampal volume and FDG that were consistent with the changes of the clinical profiles showed a non-linear change in the initial stage and an accelerated non-linear change during MCI2AD, changes in amyloid biomarkers were inconsistent with the clinical profile. Cognitively normal people with elevated or normal amyloid showed no significant differences in clinical measures, hippocampal volume, or FDG.Meaning: Amyloid-β alone may not be used as the central index for defining the preclinical stage of SAD.

1996 ◽  
Vol 141 (1-2) ◽  
pp. 65-68 ◽  
Author(s):  
Akira Tamaoka ◽  
Tetsuo Fukushima ◽  
Naoya Sawamura ◽  
Kin'ya Ishikawa ◽  
Eiichi Oguni ◽  
...  

2015 ◽  
Vol 47 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Ekaterina A. Rudnitskaya ◽  
Natalia A. Muraleva ◽  
Kseniya Yi. Maksimova ◽  
Elena Kiseleva ◽  
Nataliya G. Kolosova ◽  
...  

2020 ◽  
Vol 78 (2) ◽  
pp. 721-734
Author(s):  
Cynthia M. Stonnington ◽  
Stefanie N. Velgos ◽  
Yinghua Chen ◽  
Sameena Syed ◽  
Matt Huentelman ◽  
...  

Background: Whether brain-derived neurotrophic factor (BDNF) Met carriage impacts the risk or progression of Alzheimer’s disease (AD) is unknown. Objective: To evaluate the interaction of BDNF Met and APOE4 carriage on cerebral metabolic rate for glucose (CMRgl), amyloid burden, hippocampus volume, and cognitive decline among cognitively unimpaired (CU) adults enrolled in the Arizona APOE cohort study. Methods: 114 CU adults (mean age 56.85 years, 38% male) with longitudinal FDG PET, magnetic resonance imaging, and cognitive measures were BDNF and APOE genotyped. A subgroup of 58 individuals also had Pittsburgh B (PiB) PET imaging. We examined baseline CMRgl, PiB PET amyloid burden, CMRgl, and hippocampus volume change over time, and rate of change in cognition over an average of 15 years. Results: Among APOE4 carriers, BDNF Met carriers had significantly increased amyloid deposition and accelerated CMRgl decline in regions typically affected by AD, but without accompanying acceleration of cognitive decline or hippocampal volume changes and with higher baseline frontal CMRgl and slower frontal decline relative to the Val/Val group. The BDNF effects were not found among APOE4 non-carriers. Conclusion: Our preliminary studies suggest that there is a weak interaction between BDNF Met and APOE4 on amyloid-β plaque burden and longitudinal PET measurements of AD-related CMRgl decline in cognitively unimpaired late-middle-aged and older adults, but with no apparent effect upon rate of cognitive decline. We suggest that cognitive effects of BDNF variants may be mitigated by compensatory increases in frontal brain activity—findings that would need to be confirmed in larger studies.


2021 ◽  
Vol 14 ◽  
Author(s):  
Liding Zhang ◽  
Changwen Yang ◽  
Yanqing Li ◽  
Shiqi Niu ◽  
Xiaohan Liang ◽  
...  

Although amyloid-β42 (Aβ42) has been used as one of the core biomarkers for Alzheimer’s disease (AD) diagnosis, the dynamic changes of its different forms in the brain, blood, and even intestines and its correlation with the progression of AD disease remain obscure. Herein, we screened Aβ42-specific preferred antibody pairs 1F12/1F12 and 1F12/2C6 to accurately detect Aβ42 types using sandwich ELISA, including total Aβ42, Aβ42 oligomers (Aβ42Os), and Aβ42 monomers (Aβ42Ms). The levels of Aβ42 species in the brain, blood, and intestines of different aged APP/PS1 mice were quantified to study their correlation with AD progression. Total Aβ42 levels in the blood were not correlated with AD progression, but Aβ42Ms level in the blood of 9-month-old APP/PS1 mice was significantly reduced, and Aβ42Os level in the brain was significantly elevated compared to 3-month-old APP/PS1, demonstrating that the levels of Aβ42Ms and Aβ42Os in the blood and brain were correlated with AD progression. Interestingly, in 9-month-old APP/PS1 mice, the level of Aβ42 in the intestine was higher than that in 3-month-old APP/PS1 mice, indicating that the increased level of Aβ42 in the gastrointestinal organs may also be related to the progression of AD. Meanwhile, changes in the gut microbiota composition of APP/PS1 mice with age were also observed. Therefore, the increase in Aβ derived from intestinal tissues and changes in microbiome composition can be used as a potential early diagnosis tool for AD, and further used as an indicator of drug intervention to reduce brain amyloid.


Sign in / Sign up

Export Citation Format

Share Document