scholarly journals Cortical re-organization after traumatic brain injury elicited using functional electrical stimulation therapy: A case report

Author(s):  
Matija Milosevic ◽  
Tomoya Nakanishi ◽  
Atsushi Sasaki ◽  
Akiko Yamaguchi ◽  
Milos R. Popovic ◽  
...  

AbstractFunctional electrical stimulation therapy (FEST) can improve motor function after neurological injuries. However, little is known about cortical re-organization after FEST and weather it can improve upper-limb motor function after traumatic brain injury (TBI). Therefore, our study examined cortical and motor changes in a single male participant with chronic TBI suffering from mild motor impairment during 3-months of FEST and at 3-months follow-up. FEST was applied to enable upper-limb grasping and reaching movements during each session, which was performed for 45-60 min, 3 days per week, over 12-weeks. Short-term assessments were examined before and after each session, while long-term assessments were performed at baseline, after 6- and 12-weeks of FEST, and during follow-up 6- and 12-weeks after completing FEST. Short-term assessments carried out using transcranial magnetic stimulation (TMS) showed reduced cortical silent period (CSP), which is related to cortical and/or subcortical inhibition. At the same time, no changes in motor evoked potentials (MEP) were observed, suggesting corticospinal excitability was unaffected. Long-term assessments indicate increased MEP corticospinal excitability after 12-weeks of FEST, which remained during both follow-ups, while no changes in CSP were observed. Similarly, long-term assessments using TMS mapping showed larger hand MEP area in the primary motor cortex (M1) after 12-weeks of FEST as well as during both follow-ups. Corroborating TMS results, fMRI imaging data showed M1, as well as sensory, premotor, parietal area, and supplementary motor area activations increased after 12-weeks of FEST and during both follow-ups. While clinical scores did not change considerably, writing test performance indicates mild improvements after FEST. Our results suggest that FEST can effectively increase cortical activations, while writing tests confirmed functional improvements in fine motor function even after chronic TBI. These results demonstrated long-term recovery mechanisms of FEST, which include cortical re-organization or neuroplasticity to improve motors function after neurological injury.

2021 ◽  
Vol 15 ◽  
Author(s):  
Matija Milosevic ◽  
Tomoya Nakanishi ◽  
Atsushi Sasaki ◽  
Akiko Yamaguchi ◽  
Taishin Nomura ◽  
...  

Functional electrical stimulation therapy (FEST) can improve motor function after neurological injuries. However, little is known about cortical changes after FEST and weather it can improve motor function after traumatic brain injury (TBI). Our study examined cortical changes and motor improvements in one male participant with chronic TBI suffering from mild motor impairment affecting the right upper-limb during 3-months of FEST and during 3-months follow-up. In total, 36 sessions of FEST were applied to enable upper-limb grasping and reaching movements. Short-term assessments carried out using transcranial magnetic stimulation (TMS) showed reduced cortical silent period (CSP), indicating cortical and/or subcortical inhibition after each intervention. At the same time, no changes in motor evoked potentials (MEPs) were observed. Long-term assessments showed increased MEP corticospinal excitability after 12-weeks of FEST, which seemed to remain during both follow-ups, while no changes in CSP were observed. Similarly, long-term assessments using TMS mapping showed larger hand MEP area in the primary motor cortex (M1) after 12-weeks of FEST as well as during both follow-ups. Corroborating TMS results, functional magnetic resonance imaging (fMRI) data showed M1 activations increased during hand grip and finger pinch tasks after 12-weeks of FEST, while gradual reduction of activity compared to after the intervention was seen during follow-ups. Widespread changes were seen not only in the M1, but also sensory, parietal rostroventral, supplementary motor, and premotor areas in both contralateral and ipsilateral hemispheres, especially during the finger pinch task. Drawing test performance showed improvements after the intervention and during follow-ups. Our findings suggest that task-specific and repetitive FEST can effectively increase cortical activations by integrating voluntary motor commands and sensorimotor network through functional electrical stimulation (FES). Overall, our results demonstrated cortical re-organization in an individual with chronic TBI after FEST.


2021 ◽  
Vol 92 (5) ◽  
pp. 519-527
Author(s):  
Yasmina Molero ◽  
David James Sharp ◽  
Brian Matthew D'Onofrio ◽  
Henrik Larsson ◽  
Seena Fazel

ObjectiveTo examine psychotropic and pain medication use in a population-based cohort of individuals with traumatic brain injury (TBI), and compare them with controls from similar backgrounds.MethodsWe assessed Swedish nationwide registers to include all individuals diagnosed with incident TBI between 2006 and 2012 in hospitals or specialist outpatient care. Full siblings never diagnosed with TBI acted as controls. We examined dispensed prescriptions for psychotropic and pain medications for the 12 months before and after the TBI.ResultsWe identified 239 425 individuals with incident TBI, and 199 658 unaffected sibling controls. In the TBI cohort, 36.6% had collected at least one prescription for a psychotropic or pain medication in the 12 months before the TBI. In the 12 months after, medication use increased to 45.0%, an absolute rate increase of 8.4% (p<0.001). The largest post-TBI increases were found for opioids (from 16.3% to 21.6%, p<0.001), and non-opioid pain medications (from 20.3% to 26.6%, p<0.001). The majority of prescriptions were short-term; 20.6% of those prescribed opioids and 37.3% of those with benzodiazepines collected prescriptions for more than 6 months. Increased odds of any psychotropic or pain medication were associated with individuals before (OR: 1.62, 95% CI: 1.59 to 1.65), and after the TBI (OR: 2.30, 95% CI: 2.26 to 2.34) as compared with sibling controls, and ORs were consistently increased for all medication classes.ConclusionHigh rates of psychotropic and pain medications after a TBI suggest that medical follow-up should be routine and review medication use.


2018 ◽  
Vol 84 (8) ◽  
pp. 1314-1318 ◽  
Author(s):  
Eliza Moskowitz ◽  
Claudia I. Melendez ◽  
Julie Dunn ◽  
Abid D. Khan ◽  
Richard Gonzalez ◽  
...  

Decompressive craniectomy (DC) is a surgical modality sometimes used in the management of elevated intracranial pressure. Questions remain as to its long-term benefits in traumatic brain injury patients. The extended Glasgow Outcome Scale (eGOS) is a scoring system based on a structured interview that allows for consistent and reproducible measurement of long-term functional outcomes. The purpose of this study was to determine the eGOS score of post-craniectomy patients after discharge and stratify survivors based on outcome. A multicenter review of patients who underwent DC was performed. Survivors underwent a phone survey at which time the eGOS was calculated. Patients with an eGOS ≥ 5 were considered to have a good functional outcome. Fifty-four patients underwent DC. Age (OR 1.038; confidence interval 1.003–1.074) and Glasgow Coma Scale (OR 0677; confidence interval 0.527–0.870) were predictors of mortality. Patients who were available for follow-up (n = 13) had poor functional outcomes at discharge (eGOS = 3); however, this improved at the time of follow-up survey (eGOS = 5; P = 0.005). DC is a controversial operation with high mortality and uncertain benefit. Among our cohort, the eGOS score was significantly higher at follow-up survey than it was at discharge. Although the mortality was high, if patients survived to discharge, most had a good functional outcome at follow-up survey.


2008 ◽  
Vol 109 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Shirley I. Stiver ◽  
Max Wintermark ◽  
Geoffrey T. Manley

Object The “syndrome of the trephined” is an uncommon and poorly understood disorder of delayed neurological deficit following craniectomy. From the authors' extensive experience with decompressive hemicraniectomy for traumatic brain injury (TBI), they have encountered a number of patients who developed delayed motor deficits, also called “motor trephine syndrome,” and reversal of the weakness following cranioplasty repair. The authors set out to study motor function systematically in this patient population to define the incidence, contributing factors, and outcome of patients with motor trephine syndrome. Methods The authors evaluated patient demographics, injury characteristics, detailed motor examinations, and CT scans in 38 patients with long-term follow-up after decompressive hemicraniectomy for TBI. Results Ten patients (26%) experienced delayed contralateral upper-extremity weakness, beginning 4.9 ± 0.4 months (mean ± standard error) after decompressive hemicraniectomy. Motor deficits improved markedly within 72 hours of cranioplasty repair, and all patients recovered full motor function. The CT perfusion scans, performed in 2 patients, demonstrated improvements in cerebral blood flow commensurate with resolution of cerebrospinal fluid flow disturbances on CT scanning and return of motor strength. Comparisons between 10 patients with and 20 patients (53%) without delayed motor deficits identified 3 factors—ipsilateral contusions, abnormal cerebrospinal fluid circulation, and longer intervals to cranioplasty repair—to be strongly associated with delayed, reversible monoparesis following decompressive hemicraniectomy. Conclusions Delayed, reversible monoparesis, also called motor trephine syndrome, is common following decompressive hemicraniectomy for TBI. The results of this study suggest that close follow-up of motor strength with early cranioplasty repair may prevent delayed motor complications of decompressive hemicraniectomy.


Sign in / Sign up

Export Citation Format

Share Document