scholarly journals CryoEM Structure of Drosophila Flight Muscle Thick Filaments at 7Å Resolution

2020 ◽  
Author(s):  
Nadia Daneshparvar ◽  
Dianne W. Taylor ◽  
Thomas S. O’Leary ◽  
Hamidreza Rahmani ◽  
Fatemeh Abbasi Yeganeh ◽  
...  

AbstractStriated muscle thick filaments are composed of myosin II and several non-myosin proteins. Myosin II’s long α-helical coiled-coil tail forms the dense protein backbone of filaments while its N-terminal globular head containing the catalytic and actin binding activities extends outward from the backbone. Here we report the structure of thick filaments of the flight muscle of the fruit fly Drosophila melanogaster at 7 Å resolution. Its myosin tails are arranged in curved molecular crystalline layers identical to flight muscles of the giant waterbug Lethocerus indicus. Four non-myosin densities are observed, three of which correspond to ones found in Lethocerus; one new density, possibly stretchin-Mlck, is found on the backbone outer surface. Surprisingly, the myosin heads are disordered rather than ordered along the filament backbone. Our results show striking myosin tail similarity within flight muscle filaments of two insect orders separated by several hundred million years of evolution.Significance StatementMyosin thick filaments are one of striated muscle’s key structures, but also one of its least understood. A key question is how the myosin a-helical coiled-coil tail is arranged in the backbone. At 7Å resolution, sufficient to resolve individual a-helices, the myosin tail arrangement in thick filaments from the flight muscle of the fruit fly Drosophila melanogaster is strikingly similar to the myosin tail arrangement in flight muscles of the giant waterbug Lethocerus indicus. Nearly every other thick filament feature is different. Drosophila and Lethocerus evolved separately >245 million years ago suggesting myosin tail packing into curved molecular crystalline layers forms a highly conserved thick filament building block and different properties are obtained by alterations in non-myosin proteins.

2020 ◽  
Vol 3 (8) ◽  
pp. e202000823
Author(s):  
Nadia Daneshparvar ◽  
Dianne W Taylor ◽  
Thomas S O’Leary ◽  
Hamidreza Rahmani ◽  
Fatemeh Abbasiyeganeh ◽  
...  

Striated muscle thick filaments are composed of myosin II and several non-myosin proteins. Myosin II’s long α-helical coiled-coil tail forms the dense protein backbone of filaments, whereas its N-terminal globular head containing the catalytic and actin-binding activities extends outward from the backbone. Here, we report the structure of thick filaments of the flight muscle of the fruit fly Drosophila melanogaster at 7 Å resolution. Its myosin tails are arranged in curved molecular crystalline layers identical to flight muscles of the giant water bug Lethocerus indicus. Four non-myosin densities are observed, three of which correspond to ones found in Lethocerus; one new density, possibly stretchin-mlck, is found on the backbone outer surface. Surprisingly, the myosin heads are disordered rather than ordered along the filament backbone. Our results show striking myosin tail similarity within flight muscle filaments of two insect orders separated by several hundred million years of evolution.


1989 ◽  
Vol 109 (5) ◽  
pp. 2157-2167 ◽  
Author(s):  
J D Saide ◽  
S Chin-Bow ◽  
J Hogan-Sheldon ◽  
L Busquets-Turner ◽  
J O Vigoreaux ◽  
...  

Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.


1996 ◽  
Vol 135 (2) ◽  
pp. 371-382 ◽  
Author(s):  
P E Hoppe ◽  
R H Waterston

Caenorhabditis elegans body wall muscle contains two isoforms of myosin heavy chain, MHC A and MHC B, that differ in their ability to initiate thick filament assembly. Whereas mutant animals that lack the major isoform, MHC B, have fewer thick filaments, mutant animals that lack the minor isoform, MHC A, contain no normal thick filaments. MHC A, but not MHC B, is present at the center of the bipolar thick filament where initiation of assembly is thought to occur (Miller, D.M.,I. Ortiz, G.C. Berliner, and H.F. Epstein. 1983. Cell. 34:477-490). We mapped the sequences that confer A-specific function by constructing chimeric myosins and testing them in vivo. We have identified two distinct regions of the MHC A rod that are sufficient in chimeric myosins for filament initiation function. Within these regions, MHC A displays a more hydrophobic rod surface, making it more similar to paramyosin, which forms the thick filament core. We propose that these regions play an important role in filament initiation, perhaps mediating close contacts between MHC A and paramyosin in an antiparallel arrangement at the filament center. Furthermore, our analysis revealed that all striated muscle myosins show a characteristic variation in surface hydrophobicity along the length of the rod that may play an important role in driving assembly and determining the stagger at which dimers associate.


1968 ◽  
Vol 36 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Martin Hagopian ◽  
David Spiro

The fine structure of the tergo-coxal muscle of the cockroach, Leucophaea maderae, has been studied with the electron microscope. This muscle differs from some other types of insect flight muscles inasmuch as the ratio of thin to thick filaments is 4 instead of the characteristic 3. The cockroach flight muscle also differs from the cockroach femoral muscle in thin to thick filament ratios and diameters and in lengths of thick filaments. A comparison of these latter three parameters in a number of vertebrate and invertebrate muscles suggests in general that the diameters and lengths of the thick filaments and thin to thick filament ratios are related.


2016 ◽  
Vol 2 (9) ◽  
pp. e1600058 ◽  
Author(s):  
Zhongjun Hu ◽  
Dianne W. Taylor ◽  
Michael K. Reedy ◽  
Robert J. Edwards ◽  
Kenneth A. Taylor

We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation.


2021 ◽  
Vol 118 (14) ◽  
pp. e2024151118
Author(s):  
Hamidreza Rahmani ◽  
Wen Ma ◽  
Zhongjun Hu ◽  
Nadia Daneshparvar ◽  
Dianne W. Taylor ◽  
...  

The atomic structure of the complete myosin tail within thick filaments isolated from Lethocerus indicus flight muscle is described and compared to crystal structures of recombinant, human cardiac myosin tail segments. Overall, the agreement is good with three exceptions: the proximal S2, in which the filament has heads attached but the crystal structure doesn’t, and skip regions 2 and 4. At the head–tail junction, the tail α-helices are asymmetrically structured encompassing well-defined unfolding of 12 residues for one myosin tail, ∼4 residues of the other, and different degrees of α-helix unwinding for both tail α-helices, thereby providing an atomic resolution description of coiled-coil “uncoiling” at the head–tail junction. Asymmetry is observed in the nonhelical C termini; one C-terminal segment is intercalated between ribbons of myosin tails, the other apparently terminating at Skip 4 of another myosin tail. Between skip residues, crystal and filament structures agree well. Skips 1 and 3 also agree well and show the expected α-helix unwinding and coiled-coil untwisting in response to skip residue insertion. Skips 2 and 4 are different. Skip 2 is accommodated in an unusual manner through an increase in α-helix radius and corresponding reduction in rise/residue. Skip 4 remains helical in one chain, with the other chain unfolded, apparently influenced by the acidic myosin C terminus. The atomic model may shed some light on thick filament mechanosensing and is a step in understanding the complex roles that thick filaments of all species undergo during muscle contraction.


Author(s):  
D. A. Fischman ◽  
J. E. Dennis ◽  
T. Obinata ◽  
H. Takano-Ohmuro

C-protein is a 150 kDa protein found within the A bands of all vertebrate cross-striated muscles. By immunoelectron microscopy, it has been demonstrated that C-protein is distributed along a series of 7-9 transverse stripes in the medial, cross-bridge bearing zone of each A band. This zone is now termed the C-zone of the sarcomere. Interest in this protein has been sparked by its striking distribution in the sarcomere: the transverse repeat between C-protein stripes is 43 nm, almost exactly 3 times the 14.3 nm axial repeat of myosin cross-bridges along the thick filaments. The precise packing of C-protein in the thick filament is still unknown. It is the only sarcomeric protein which binds to both myosin and actin, and the actin-binding is Ca-sensitive. In cardiac and slow, but not fast, skeletal muscles C-protein is phosphorylated. Amino acid composition suggests a protein of little or no αhelical content. Variant forms (isoforms) of C-protein have been identified in cardiac, slow and embryonic muscles.


1994 ◽  
Vol 107 (5) ◽  
pp. 1115-1129 ◽  
Author(s):  
C. Ferguson ◽  
A. Lakey ◽  
A. Hutchings ◽  
G.W. Butcher ◽  
K.R. Leonard ◽  
...  

Asynchronous insect flight muscles produce oscillatory contractions and can contract at high frequency because they are activated by stretch as well as by Ca2+. Stretch activation depends on the high stiffness of the fibres and the regular structure of the filament lattice. Cytoskeletal proteins may be important in stabilising the lattice. Two proteins, zeelin 1 (35 kDa) and zeelin 2 (23 kDa), have been isolated from the cytoskeletal fraction of Lethocerus flight muscle. Both zeelins have multiple isoforms of the same molecular mass and different charge. Zeelin 1 forms micelles and zeelin 2 forms filaments when renatured in low ionic strength solutions. Filaments of zeelin 2 are ribbons 10 nm wide and 3 nm thick. The position of zeelins in fibres from Lethocerus flight and leg muscle was determined by immunofluorescence and immunoelectron microscopy. Zeelin 1 is found in flight and leg fibres and zeelin 2 only in flight fibres. In flight myofibrils, both zeelins are in discrete regions of the A-band in each half sarcomere. Zeelin 1 is across the whole A-band in leg myofibrils. Zeelins are not in the Z-disc, as was thought previously, but migrate to the Z-disc in glycerinated fibres. Zeelins are associated with thick filaments and analysis of oblique sections showed that zeelin 1 is closer to the filament shaft than zeelin 2. The antibody labelling pattern is consistent with zeelin molecules associated with myosin near the end of the rod region. Alternatively, the position of zeelins may be determined by other A-band proteins. There are about 2.0 to 2.5 moles of myosin per mole of each zeelin. The function of these cytoskeletal proteins may be to maintain the ordered structure of the thick filament.


1968 ◽  
Vol 37 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Robert E. Kelly ◽  
Robert V. Rice

Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.


1977 ◽  
Vol 75 (2) ◽  
pp. 366-380 ◽  
Author(s):  
M M Dewey ◽  
B Walcott ◽  
D E Colflesh ◽  
H Terry ◽  
R J Levine

Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.


Sign in / Sign up

Export Citation Format

Share Document