scholarly journals Changes in thick filament length in Limulus striated muscle.

1977 ◽  
Vol 75 (2) ◽  
pp. 366-380 ◽  
Author(s):  
M M Dewey ◽  
B Walcott ◽  
D E Colflesh ◽  
H Terry ◽  
R J Levine

Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.

1968 ◽  
Vol 37 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Robert E. Kelly ◽  
Robert V. Rice

Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.


1971 ◽  
Vol 48 (1) ◽  
pp. 101-119 ◽  
Author(s):  
R. A. Leyton ◽  
E. H. Sonnenblick

The fine structure of the cardiac muscle of the horseshoe crab, Limulus polyphemus, has been studied with respect to the organization of its contractile material, and the structure of its organelles and the cell junctions. Longitudinal sections show long sarcomeres (5.37 µ at Lmax), wide A bands (2.7 µ), irregular Z lines, no M line, and no apparent H zone. Transverse sections through the S zone of the A band show that each thick filament is ca. 180 A in diameter, is circular in profile with a center of low density, and is surrounded by an orbit of 9–12 thin filaments, each 60 A in diameter. Thick filaments are confined to the A band: thin filaments originate at the Z band, extend through the I band, and pass into the A band between the thick filaments. The sarcolemmal surface area is increased significantly by intercellular clefts. Extending into the fiber from these clefts and from the sarcolemma, T tubules pass into the fiber at the A-I level. Each fibril is enveloped by a profuse membranous covering of sarcoplasmic reticulum (SR). Sacculations of the SR occur at the A-I boundary where they make diadic contact with longitudinal branches of the T system. These branches also extend toward the Z, enlarge at the Z line, and pass into the next sarcomere. Infrequently noted were intercalated discs possessing terminal insertion and desmosome modifications, but lacking close junctions (fasciae occludentes). These structural details are compared with those of mammalian cardiac and invertebrate muscles.


1970 ◽  
Vol 6 (2) ◽  
pp. 559-592
Author(s):  
CLARA FRANZINI-ARMSTRONG

The carpopodite flexor of the walking legs of the crab Portunus depurator contains fibres belonging to 3 groups. These are characterized by differences in the cross-striation spacing. Fibres having sarcomeres of approximately 4, 5 and 7 µm are here called short, medium and long sarcomere types, respectively. Within individual fibres belonging to any of the groups the length of the A band is not constant. Up to 25 % length differences have been measured in A bands belonging even to the same fibril. The bridge-free regions of the thick filaments are not always in the centre, so that the filaments are often asymmetric. Analogally, the L line, resulting from the alignment of the bridge-free regions of the thick filaments, may be asymmetrically placed in the Z band. The length of the bridge-free region in crab thick filaments is 60 nm, while the corresponding region in vertebrate thick filaments is 120 nm. This is discussed in terms of a possible model of the filament. The length of the thin filaments is proportional to that of the thick filaments in the corresponding portion of the sarcomere. When two A bands of different length occur in adjacent positions along the fibril, the Z line is not a centre of symmetry. The ratio of thin to thick filament number is variable in individual fibrils. In general, the ratio is higher in the medium sarcomere type fibres than in the short sarcomere type. Stretched and shorter portions of single fibres of the medium type have been examined and the A-band length populations compared. From such a study it can be deduced that passive length changes occur in crab fibres by sliding of thin and thick filaments.


2020 ◽  
Vol 117 (22) ◽  
pp. 11865-11874 ◽  
Author(s):  
Raúl Padrón ◽  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Natalia Koubassova ◽  
Kyoung Hwan Lee ◽  
...  

Striated muscle contraction involves sliding of actin thin filaments along myosin thick filaments, controlled by calcium through thin filament activation. In relaxed muscle, the two heads of myosin interact with each other on the filament surface to form the interacting-heads motif (IHM). A key question is how both heads are released from the surface to approach actin and produce force. We used time-resolved synchrotron X-ray diffraction to study tarantula muscle before and after tetani. The patterns showed that the IHM is present in live relaxed muscle. Tetanic contraction produced only a very small backbone elongation, implying that mechanosensing—proposed in vertebrate muscle—is not of primary importance in tarantula. Rather, thick filament activation results from increases in myosin phosphorylation that release a fraction of heads to produce force, with the remainder staying in the ordered IHM configuration. After the tetanus, the released heads slowly recover toward the resting, helically ordered state. During this time the released heads remain close to actin and can quickly rebind, enhancing the force produced by posttetanic twitches, structurally explaining posttetanic potentiation. Taken together, these results suggest that, in addition to stretch activation in insects, two other mechanisms for thick filament activation have evolved to disrupt the interactions that establish the relaxed helices of IHMs: one in invertebrates, by either regulatory light-chain phosphorylation (as in arthropods) or Ca2+-binding (in mollusks, lacking phosphorylation), and another in vertebrates, by mechanosensing.


2000 ◽  
Vol 6 (S2) ◽  
pp. 76-77
Author(s):  
Rhea J.C. Levine ◽  
Irina Kulakovskaya ◽  
H. Lee Sweeney ◽  
Saul Winegrad ◽  
Zhaohui Yang

In mammalian skeletal and cardiac muscles, regulation of activity occurs when calcium binds to troponin on thin filaments, which ultimately results in exposure of myosin-binding sites on actin. However, modulation of contractile function, affecting such parameters as calcium sensitivity, the rate of rise of tension, the expression of maximum tension and/or the rate of onset of relaxation, is also calcium dependent. It is, in part, a property of the thick filament itself and its component myosin and/or accessory proteins. Among these are phosphorylation of myosin regulatory light chains or light chain 2 (RLCs; LC2) and in cardiac, but not skeletal fibers, phosphorylation of myosin-binding protein C (MyBP-C).Gentle methods of separating thick filaments from small tissue specimens, subjected to various experimental protocols designed to explore the functional parameters of such modulatory activities, allow examination of any accompanying structural changes.


2005 ◽  
Vol 83 (10) ◽  
pp. 825-831 ◽  
Author(s):  
Farah Ali ◽  
Peter D Paré ◽  
Chun Y Seow

It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.Key words: contraction model, ultrastructure, length adaptation, plasticity.


1956 ◽  
Vol 2 (4) ◽  
pp. 157-162 ◽  
Author(s):  
David Spiro

1. Rest and equilibrium length muscle sarcomeres are composed of thin filaments (actin) which traverse the sarcomeres from the Z membranes up to the H band; at this level the filaments are considerably thicker and less numerous. 2. Shortening of muscle is associated with a transformation of thin into thick filaments in the A band. 3. These observations are discussed in terms of interaction of actin and myosin to form a supercoiled structure as the basis of contraction.


1996 ◽  
Vol 135 (2) ◽  
pp. 371-382 ◽  
Author(s):  
P E Hoppe ◽  
R H Waterston

Caenorhabditis elegans body wall muscle contains two isoforms of myosin heavy chain, MHC A and MHC B, that differ in their ability to initiate thick filament assembly. Whereas mutant animals that lack the major isoform, MHC B, have fewer thick filaments, mutant animals that lack the minor isoform, MHC A, contain no normal thick filaments. MHC A, but not MHC B, is present at the center of the bipolar thick filament where initiation of assembly is thought to occur (Miller, D.M.,I. Ortiz, G.C. Berliner, and H.F. Epstein. 1983. Cell. 34:477-490). We mapped the sequences that confer A-specific function by constructing chimeric myosins and testing them in vivo. We have identified two distinct regions of the MHC A rod that are sufficient in chimeric myosins for filament initiation function. Within these regions, MHC A displays a more hydrophobic rod surface, making it more similar to paramyosin, which forms the thick filament core. We propose that these regions play an important role in filament initiation, perhaps mediating close contacts between MHC A and paramyosin in an antiparallel arrangement at the filament center. Furthermore, our analysis revealed that all striated muscle myosins show a characteristic variation in surface hydrophobicity along the length of the rod that may play an important role in driving assembly and determining the stagger at which dimers associate.


2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Weikang Ma ◽  
Sebastian Duno-Miranda ◽  
Thomas Irving ◽  
Roger Craig ◽  
Raúl Padrón

Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation–based ATP energy-saving mechanism in the range of 8.5–40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.


2002 ◽  
Vol 205 (13) ◽  
pp. 1907-1916 ◽  
Author(s):  
William M. Kier ◽  
Nancy A. Curtin

SUMMARYThe contractile properties of the transverse muscle of the tentacles and the transverse muscle of the arms of the squid Loligo pealei were investigated using small muscle fibre bundle preparations. In addition,transmission electron microscopy was used to measure the length of the thick myofilaments of the two muscle fibre types. The thick filament length of the cross-striated tentacle fibres was 0.81±0.08 μm (mean ± S.D, N=51) while that of the obliquely striated arm muscle fibres was 7.41±0.44 μm (N=58). The difference in thick filament length of the two muscle types was predicted to result in a much higher shortening velocity of the tentacle muscle compared with the arm muscle. This was tested by investigating the force/velocity relationship for isotonic shortening of the two muscle types. Fitting Hill's equation to the results gave a maximum shortening velocity (Vmax, the intercept on the velocity axis) of 15.4±1.0 L0 s-1(mean ± S.D., N=9) for the tentacle fibres and of 1.5±0.2 L0 s-1 (N=8) for the arm fibres, where L0 is the length at which peak isometric force was recorded. The difference in thick filament length was also predicted to result in lower peak tension in the tentacle versus the arm muscle. For the tentacle, the mean peak tetanic tension during a brief isometric tetanus (0.2s) of 131±56 mN mm-2 cross-sectional area (mean ± S.D., N=12) was observed at a stimulus frequency of 80 Hz, whereas the mean peak tetanic tension of the arm fibres during a brief isometric tetanus (0.2s) was 468±91 mN mm-2(N=5) and was observed at a stimulus frequency of 160 Hz. The length/force relationships (expressed relative to L0) of the two muscle types were similar. The ratio of twitch force to peak tetanic force was 0.66 in the tentacle fibres, but only 0.03 in the arm fibres.


Sign in / Sign up

Export Citation Format

Share Document