scholarly journals Serial interval, basic reproduction number and prediction of COVID-19 epidemic size in Jodhpur, India

Author(s):  
Suman Saurabh ◽  
Mahendra Kumar Verma ◽  
Vaishali Gautam ◽  
Akhil Goel ◽  
Manoj Kumar Gupta ◽  
...  

ABSTRACTBackgroundUnderstanding the epidemiology of COVID-19 is important for design of effective control measures at local level. We aimed to estimate the serial interval and basic reproduction number for Jodhpur, India and to use it for prediction of epidemic size for next one month.MethodsContact tracing of SARS-CoV-2 infected individuals was done to obtain the serial intervals. Aggregate and instantaneous R0 values were derived and epidemic projection was done using R software v4.0.0.ResultsFrom among 79 infector-infectee pairs, the estimated median and 95 percentile values of serial interval were 5.98 days (95% CI 5.39 – 6.65) and 13.17 days (95% CI 11.27 – 15.57), respectively. The overall R0 value in the first 30 days of outbreak was 1.64 (95% CI 1.12 – 2.25) which subsequently decreased to 1.07 (95% CI 1.06 – 1.09). The instantaneous R0 value over 14 days window ranged from a peak of 3.71 (95% CI 1.85 -2.08) to 0.88 (95% CI 0.81 – 0.96) as on 24 June 2020. The projected COVID-19 case-load over next one month was 1881 individuals. Reduction of R0 from 1.17 to 1.085 could result in 23% reduction in projected epidemic size over the next one month.ConclusionAggressive testing, contact-tracing and isolation of infected individuals in Jodhpur district resulted in reduction of R0. Further strengthening of control measures could lead to substantial reduction of COVID-19 epidemic size. A data-driven strategy was found useful in surge capacity planning and guiding the public health strategy at local level.

2020 ◽  
Author(s):  
Suman Saurabh ◽  
Mahendra Kumar Verma ◽  
Vaishali Gautam ◽  
Nitesh Kumar ◽  
Akhil Dhanesh Goel ◽  
...  

BACKGROUND On March 9, 2020, the first COVID-19 case was reported in Jodhpur, Rajasthan, in the northwestern part of India. Understanding the epidemiology of COVID-19 at a local level is becoming increasingly important to guide measures to control the pandemic. OBJECTIVE The aim of this study was to estimate the serial interval and basic reproduction number (R<sub>0</sub>) to understand the transmission dynamics of the COVID-19 outbreak at a district level. We used standard mathematical modeling approaches to assess the utility of these factors in determining the effectiveness of COVID-19 responses and projecting the size of the epidemic. METHODS Contact tracing of individuals infected with SARS-CoV-2 was performed to obtain the serial intervals. The median and 95th percentile values of the SARS-CoV-2 serial interval were obtained from the best fits with the weibull, log-normal, log-logistic, gamma, and generalized gamma distributions. Aggregate and instantaneous R<sub>0</sub> values were derived with different methods using the EarlyR and EpiEstim packages in R software. RESULTS The median and 95th percentile values of the serial interval were 5.23 days (95% CI 4.72-5.79) and 13.20 days (95% CI 10.90-18.18), respectively. R<sub>0</sub> during the first 30 days of the outbreak was 1.62 (95% CI 1.07-2.17), which subsequently decreased to 1.15 (95% CI 1.09-1.21). The peak instantaneous R<sub>0</sub> values obtained using a Poisson process developed by Jombert et al were 6.53 (95% CI 2.12-13.38) and 3.43 (95% CI 1.71-5.74) for sliding time windows of 7 and 14 days, respectively. The peak R<sub>0</sub> values obtained using the method by Wallinga and Teunis were 2.96 (95% CI 2.52-3.36) and 2.92 (95% CI 2.65-3.22) for sliding time windows of 7 and 14 days, respectively. R<sub>0</sub> values of 1.21 (95% CI 1.09-1.34) and 1.12 (95% CI 1.03-1.21) for the 7- and 14-day sliding time windows, respectively, were obtained on July 6, 2020, using method by Jombert et al. Using the method by Wallinga and Teunis, values of 0.32 (95% CI 0.27-0.36) and 0.61 (95% CI 0.58-0.63) were obtained for the 7- and 14-day sliding time windows, respectively. The projection of cases over the next month was 2131 (95% CI 1799-2462). Reductions of transmission by 25% and 50% corresponding to reasonable and aggressive control measures could lead to 58.7% and 84.0% reductions in epidemic size, respectively. CONCLUSIONS The projected transmission reductions indicate that strengthening control measures could lead to proportionate reductions of the size of the COVID-19 epidemic. Time-dependent instantaneous R<sub>0</sub> estimation based on the process by Jombart et al was found to be better suited for guiding COVID-19 response at the district level than overall R<sub>0</sub> or instantaneous R<sub>0</sub> estimation by the Wallinga and Teunis method. A data-driven approach at the local level is proposed to be useful in guiding public health strategy and surge capacity planning.


10.2196/22678 ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. e22678 ◽  
Author(s):  
Suman Saurabh ◽  
Mahendra Kumar Verma ◽  
Vaishali Gautam ◽  
Nitesh Kumar ◽  
Akhil Dhanesh Goel ◽  
...  

Background On March 9, 2020, the first COVID-19 case was reported in Jodhpur, Rajasthan, in the northwestern part of India. Understanding the epidemiology of COVID-19 at a local level is becoming increasingly important to guide measures to control the pandemic. Objective The aim of this study was to estimate the serial interval and basic reproduction number (R0) to understand the transmission dynamics of the COVID-19 outbreak at a district level. We used standard mathematical modeling approaches to assess the utility of these factors in determining the effectiveness of COVID-19 responses and projecting the size of the epidemic. Methods Contact tracing of individuals infected with SARS-CoV-2 was performed to obtain the serial intervals. The median and 95th percentile values of the SARS-CoV-2 serial interval were obtained from the best fits with the weibull, log-normal, log-logistic, gamma, and generalized gamma distributions. Aggregate and instantaneous R0 values were derived with different methods using the EarlyR and EpiEstim packages in R software. Results The median and 95th percentile values of the serial interval were 5.23 days (95% CI 4.72-5.79) and 13.20 days (95% CI 10.90-18.18), respectively. R0 during the first 30 days of the outbreak was 1.62 (95% CI 1.07-2.17), which subsequently decreased to 1.15 (95% CI 1.09-1.21). The peak instantaneous R0 values obtained using a Poisson process developed by Jombert et al were 6.53 (95% CI 2.12-13.38) and 3.43 (95% CI 1.71-5.74) for sliding time windows of 7 and 14 days, respectively. The peak R0 values obtained using the method by Wallinga and Teunis were 2.96 (95% CI 2.52-3.36) and 2.92 (95% CI 2.65-3.22) for sliding time windows of 7 and 14 days, respectively. R0 values of 1.21 (95% CI 1.09-1.34) and 1.12 (95% CI 1.03-1.21) for the 7- and 14-day sliding time windows, respectively, were obtained on July 6, 2020, using method by Jombert et al. Using the method by Wallinga and Teunis, values of 0.32 (95% CI 0.27-0.36) and 0.61 (95% CI 0.58-0.63) were obtained for the 7- and 14-day sliding time windows, respectively. The projection of cases over the next month was 2131 (95% CI 1799-2462). Reductions of transmission by 25% and 50% corresponding to reasonable and aggressive control measures could lead to 58.7% and 84.0% reductions in epidemic size, respectively. Conclusions The projected transmission reductions indicate that strengthening control measures could lead to proportionate reductions of the size of the COVID-19 epidemic. Time-dependent instantaneous R0 estimation based on the process by Jombart et al was found to be better suited for guiding COVID-19 response at the district level than overall R0 or instantaneous R0 estimation by the Wallinga and Teunis method. A data-driven approach at the local level is proposed to be useful in guiding public health strategy and surge capacity planning.


2020 ◽  
Vol 148 ◽  
Author(s):  
A. Khosravi ◽  
R. Chaman ◽  
M. Rohani-Rasaf ◽  
F. Zare ◽  
S. Mehravaran ◽  
...  

Abstract The aim of this study was to estimate the basic reproduction number (R0) of COVID-19 in the early stage of the epidemic and predict the expected number of new cases in Shahroud in Northeastern Iran. The R0 of COVID-19 was estimated using the serial interval distribution and the number of incidence cases. The 30-day probable incidence and cumulative incidence were predicted using the assumption that daily incidence follows a Poisson distribution determined by daily infectiousness. Data analysis was done using ‘earlyR’ and ‘projections’ packages in R software. The maximum-likelihood value of R0 was 2.7 (95% confidence interval (CI): 2.1−3.4) for the COVID-19 epidemic in the early 14 days and decreased to 1.13 (95% CI 1.03–1.25) by the end of day 42. The expected average number of new cases in Shahroud was 9.0 ± 3.8 cases/day, which means an estimated total of 271 (95% CI: 178–383) new cases for the period between 02 April to 03 May 2020. By day 67 (27 April), the effective reproduction number (Rt), which had a descending trend and was around 1, reduced to 0.70. Based on the Rt for the last 21 days (days 46–67 of the epidemic), the prediction for 27 April to 26 May is a mean daily cases of 2.9 ± 2.0 with 87 (48–136) new cases. In order to maintain R below 1, we strongly recommend enforcing and continuing the current preventive measures, restricting travel and providing screening tests for a larger proportion of the population.


2020 ◽  
Author(s):  
Lingling Zheng ◽  
Qin Kang ◽  
Weiyao Liao ◽  
Xiujuan Chen ◽  
Shuai Huang ◽  
...  

AbstractBackgroundOn the present trajectory, COVID is inevitably becoming a global epidemic, leading to concerns regarding the pandemic potential in China and other countries.ObjectiveIn this study, we use the time-dependent reproduction number (Rt) to comprise the COVID transmissibility across different countries.MethodsWe used data from Jan 20, 2019, to Feb 29, 2020, on the number of newly confirmed cases, obtained from the reports published by the CDC, to infer the incidence of infectious over time. A two-step procedure was used to estimate the Rt. The first step used data on known index-secondary cases pairs, from publicly available case reports, to estimate the serial interval distribution. The second step estimated the Rt jointly from the incidence data and the information data in the first step. Rt was then used to simulate the epidemics across all major cities in China and typical countries worldwide.ResultsBased on a total of 126 index-secondary cases pairs from 4 international regions, we estimated that the serial interval for SARS-2-CoV was 4.18 (IQR 1.92 – 6.65) days. Domestically, Rt of China, Hubei province, Wuhan had fallen below 1.0 on 9 Feb, 10 Feb and 13 Feb (Rt were 0.99±0.02, 0.99±0.02 and 0.96±0.02), respectively. Internationally, as of 26 Feb, statistically significant periods of COVID spread (Rt >1) were identified for most regions, except for Singapore (Rt was 0.92±0.17).ConclusionsThe epidemic in China has been well controlled, but the worldwide pandemic has not been well controlled. Worldwide preparedness and vulnerability against COVID-19 should be regarded with more care.What is already known on this subject?The basic reproduction number (R0) and the-time-dependent reproduction number (Rt) are two important indicators of infectious disease transmission. In addition, Rt as a derivative of R0 could be used to assess the epidemiological development of the disease and effectiveness of control measures. Most current researches used data from earlier periods in Wuhan and refer to the epidemiological features of SARS, which are possibly biased. Meanwhile, there are fewer studies discussed the Rt of COVID-19. Current clinical and epidemiological data are insufficient to help us understand the full view of the potential transmission of this disease.What this study adds?We use up-to-data observation of the serial interval and cases arising from local transmission to calculate the Rt in different outbreak level area and every province in China as well as five-top sever outbreak countries and other overseas. By comparing the Rt, we discussed the situation of outbreak around the world.


2020 ◽  
Vol 14 (11) ◽  
pp. e0008811
Author(s):  
Joseph Sichone ◽  
Martin C. Simuunza ◽  
Bernard M. Hang’ombe ◽  
Mervis Kikonko

Background Plague is a re-emerging flea-borne infectious disease of global importance and in recent years, Zambia has periodically experienced increased incidence of outbreaks of this disease. However, there are currently no studies in the country that provide a quantitative assessment of the ability of the disease to spread during these outbreaks. This limits our understanding of the epidemiology of the disease especially for planning and implementing quantifiable and cost-effective control measures. To fill this gap, the basic reproduction number, R0, for bubonic plague was estimated in this study, using data from the 2015 Nyimba district outbreak, in the Eastern province of Zambia. R0 is the average number of secondary infections arising from a single infectious individual during their infectious period in an entirely susceptible population. Methodology/Principal findings Secondary epidemic data for the most recent 2015 Nyimba district bubonic plague outbreak in Zambia was analyzed. R0 was estimated as a function of the average epidemic doubling time based on the initial exponential growth rate of the outbreak and the average infectious period for bubonic plague. R0 was estimated to range between 1.5599 [95% CI: 1.382–1.7378] and 1.9332 [95% CI: 1.6366–2.2297], with average of 1.7465 [95% CI: 1.5093–1.9838]. Further, an SIR deterministic mathematical model was derived for this infection and this estimated R0 to be between 1.4 to 1.5, which was within the range estimated above. Conclusions/Significance This estimated R0 for bubonic plague is an indication that each bubonic plague case can typically give rise to almost two new cases during these outbreaks. This R0 estimate can now be used to quantitatively analyze and plan measurable interventions against future plague outbreaks in Zambia.


2020 ◽  
Author(s):  
Ahmad Khosravi ◽  
Reza Chaman ◽  
Marzieh Rohani-Rasaf ◽  
Fariba Zare ◽  
Shiva Mehravaran ◽  
...  

AbstractObjectivesTo estimate the basic reproduction number (R0) of COVID-19 in the early stage of the epidemic and predict the expected number of new cases in Shahroud, Northeast of Iran.MethodsThe R0 of COVID-19 was estimated using the serial interval distribution and the number of incidence cases. The serial interval was fit with a gamma distribution. The probable incidence and cumulative incidence in the next 30 days were predicted using the assumption that daily incidence follows a Poisson distribution determined by daily infectiousness. Data analysis was done using “earlyR” and “projections” packages in R software.ResultsThe maximum-likelihood value of R0 was 2.7 (95% confidence interval (CI): 2.1 to 3.4) for the COVID-19 epidemic in the early 14 days and decreased to 1.13 (95% CI: 1.03 to 1.25) by the end of the day 41. The expected average number of new cases in Shahroud is 9.0±3.8 case/day, which means an estimated total of 271 (95% CI: 178-383) new cases in the next 30 days.ConclusionsIt is essential to reduce the R0 to values below one. Therefore, we strongly recommend enforcing and continuing the current preventive measures, restricting travel, and providing screening tests for a larger proportion of the population.


2020 ◽  
Vol 67 (6) ◽  
pp. 2860-2868 ◽  
Author(s):  
Mohammad Aghaali ◽  
Goodarz Kolifarhood ◽  
Roya Nikbakht ◽  
Hossein Mozafar Saadati ◽  
Seyed Saeed Hashemi Nazari

2020 ◽  
Vol 148 ◽  
Author(s):  
Rima R. Sahay ◽  
Pragya D. Yadav ◽  
Nivedita Gupta ◽  
Anita M. Shete ◽  
Chandni Radhakrishnan ◽  
...  

Abstract Nipah virus (NiV) outbreak occurred in Kozhikode district, Kerala, India in 2018 with a case fatality rate of 91% (21/23). In 2019, a single case with full recovery occurred in Ernakulam district. We described the response and control measures by the Indian Council of Medical Research and Kerala State Government for the 2019 NiV outbreak. The establishment of Point of Care assays and monoclonal antibodies administration facility for early diagnosis, response and treatment, intensified contact tracing activities, bio-risk management and hospital infection control training of healthcare workers contributed to effective control and containment of NiV outbreak in Ernakulam.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Chaojian Shen ◽  
Mingtao Li ◽  
Wei Zhang ◽  
Ying Yi ◽  
Youming Wang ◽  
...  

Streptococcosis is one of the major infectious and contagious bacterial diseases for swine farm in southern China. The influence of various control measures on the outbreaks and transmission ofS. suisis not currently known. In this study, in order to explore effective control and prevention measures we studied a deterministic dynamic model with stage structure forS. suis. The basic reproduction numberℛ0is identified and global dynamics are completely determined byℛ0. It shows that ifℛ0<1, the disease-free equilibrium is globally stable and the disease dies out, whereas ifℛ0>1, there is a unique endemic equilibrium which is globally stable and thus the disease persists in the population. The model simulations well agree with new clinical cases and the basic reproduction number of this model is about 1.1333. Some sensitivity analyses ofℛ0in terms of the model parameters are given. Our study demonstrates that combination of vaccination and disinfection of the environment are the useful control strategy forS. suis.


Sign in / Sign up

Export Citation Format

Share Document