scholarly journals Plasticity in prefrontal cortex induced by coordinated nucleus reuniens and hippocampal synaptic transmission

Author(s):  
Paul J Banks ◽  
E Clea Warburton ◽  
Zafar I Bashir

AbstractThe nucleus reuniens of the thalamus (NRe) is reciprocally connected to a range of higher order cortices including hippocampus (HPC) and medial prefrontal cortex (mPFC). The physiological function of NRe is well predicted by requirement for interactions between mPFC and HPC, including associative recognition memory, spatial navigation and working memory. Although anatomical and electrophysiological evidence suggests NRe makes excitatory synapses in mPFC there is little data on the physiological properties of these projections, or whether NRe and HPC target overlapping cell populations and, if so, how they interact. We demonstrate in ex vivo mPFC slices that NRe and HPC afferent inputs converge onto more than two-thirds of layer 5 pyramidal neurons, show that NRe, but not HPC, undergoes marked short-term plasticity at theta, and that HPC, but not NRe, afferents are subject to neuromodulation by acetylcholine acting via muscarinic receptor M2. Finally, we demonstrate that pairing HPC followed by NRe (but not pairing NRe followed by HPC) at theta frequency induces associative, NMDA receptor dependent synaptic plasticity in both inputs to mPFC. These data provide vital physiological phenotypes of the synapses of this circuit and provide a novel mechanism for HPC-NRe-mPFC encoding.

Author(s):  
Paul J Banks ◽  
E Clea Warburton ◽  
Zafar I Bashir

Abstract The nucleus reuniens and rhomboid nuclei of the thalamus (ReRh) are reciprocally connected to a range of higher order cortices including hippocampus (HPC) and medial prefrontal cortex (mPFC). The physiological function of ReRh is well predicted by requirement for interactions between mPFC and HPC, including associative recognition memory, spatial navigation and working memory. Although anatomical and electrophysiological evidence suggests ReRh makes excitatory synapses in mPFC there is little data on the physiological properties of these projections, or whether ReRh and HPC target overlapping cell populations and, if so, how they interact. We demonstrate in ex vivo mPFC slices that ReRh and HPC afferent inputs converge onto more than two-thirds of layer 5 pyramidal neurons, show that ReRh, but not HPC, undergoes marked short-term plasticity during theta frequency transmission, and that HPC, but not ReRh, afferents are subject to neuromodulation by acetylcholine acting via muscarinic receptor M2. Finally, we demonstrate that pairing HPC followed by ReRh (but not pairing ReRh followed by HPC) at theta frequency induces associative, NMDA receptor dependent synaptic plasticity in both inputs to mPFC. These data provide vital physiological phenotypes of the synapses of this circuit and provide a novel mechanism for HPC-ReRh-mPFC encoding.


2000 ◽  
Vol 83 (5) ◽  
pp. 3031-3041 ◽  
Author(s):  
Chris M. Hempel ◽  
Kenichi H. Hartman ◽  
X.-J. Wang ◽  
Gina G. Turrigiano ◽  
Sacha B. Nelson

Short-term synaptic plasticity, in particular short-term depression and facilitation, strongly influences neuronal activity in cerebral cortical circuits. We investigated short-term plasticity at excitatory synapses onto layer V pyramidal cells in the rat medial prefrontal cortex, a region whose synaptic dynamic properties have not been systematically examined. Using intracellular and extracellular recordings of synaptic responses evoked by stimulation in layers II/III in vitro, we found that short-term depression and short-term facilitation are similar to those described previously in other regions of the cortex. In additition, synapses in the prefrontal cortex prominently express augmentation, a longer lasting form of short-term synaptic enhancement. This consists of a 40–60% enhancement of synaptic transmission which lasts seconds to minutes and which can be induced by stimulus trains of moderate duration and frequency. Synapses onto layer III neurons in the primary visual cortex express substantially less augmentation, indicating that this is a synapse-specific property. Intracellular recordings from connected pairs of layer V pyramidal cells in the prefrontal cortex suggest that augmentation is a property of individual synapses that does not require activation of multiple synaptic inputs or neuromodulatory fibers. We propose that synaptic augmentation could function to enhance the ability of a neuronal circuit to sustain persistent activity after a transient stimulus. This idea is explored using a computer simulation of a simplified recurrent cortical network.


2007 ◽  
Vol 97 (1) ◽  
pp. 948-950 ◽  
Author(s):  
Jane M. Sullivan

Paired-pulse depression (PPD) is a form of short-term plasticity that plays a central role in processing of synaptic activity and is manifest as a decrease in the size of the response to the second of two closely timed stimuli. Despite mounting evidence to the contrary, PPD is still commonly thought to reflect depletion of the pool of synaptic vesicles available for release in response to the second stimulus. Here it is shown that PPD cannot be accounted for by depletion at excitatory synapses made by hippocampal neurons because PPD is unaffected by changes in the fraction of the readily releasable pool (RRP) released by the first of a pair of pulses.


1997 ◽  
Vol 17 (20) ◽  
pp. 7926-7940 ◽  
Author(s):  
Juan A. Varela ◽  
Kamal Sen ◽  
Jay Gibson ◽  
Joshua Fost ◽  
L. F. Abbott ◽  
...  

2017 ◽  
Vol 128 (7) ◽  
pp. 1117-1126 ◽  
Author(s):  
Sung Wook Chung ◽  
Benjamin P. Lewis ◽  
Nigel C. Rogasch ◽  
Takashi Saeki ◽  
Richard H. Thomson ◽  
...  

2007 ◽  
Vol 18 (3) ◽  
pp. 626-637 ◽  
Author(s):  
G. Gonzalez-Burgos ◽  
S. Kroener ◽  
A. V. Zaitsev ◽  
N. V. Povysheva ◽  
L. S. Krimer ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mark D. Condon ◽  
Nicola J. Platt ◽  
Yan-Feng Zhang ◽  
Bradley M. Roberts ◽  
Michael A. Clements ◽  
...  

Abstract Mesostriatal dopaminergic neurons possess extensively branched axonal arbours. Whether action potentials are converted to dopamine output in the striatum will be influenced dynamically and critically by axonal properties and mechanisms that are poorly understood. Here, we address the roles for mechanisms governing release probability and axonal activity in determining short‐term plasticity of dopamine release, using fast‐scan cyclic voltammetry in the ex vivo mouse striatum. We show that brief short‐term facilitation and longer short term depression are only weakly dependent on the level of initial release, i.e. are release insensitive. Rather, short-term plasticity is strongly determined by mechanisms which govern axonal activation, including K+‐gated excitability and the dopamine transporter, particularly in the dorsal striatum. We identify the dopamine transporter as a master regulator of dopamine short‐term plasticity, governing the balance between release‐dependent and independent mechanisms that also show region‐specific gating.


2010 ◽  
Vol 104 (4) ◽  
pp. 2203-2213 ◽  
Author(s):  
Debika Chatterjea ◽  
Edaeni Hamid ◽  
John P. Leonard ◽  
Simon Alford

N-methyl-d-aspartate (NMDA) receptor-mediated currents are enhanced by phosphorylation. We have investigated effects of phosphorylation-dependent short-term plasticity of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) on the induction of long-term depression (LTD). We confirmed in whole cell clamped CA1 pyramidal neurons that LTD is induced by pairing stimulus protocols. However, after serine-threonine phosphorylation was modified by postsynaptic introduction of a protein phosphatase-1 (PP1) inhibitor, the same pairing protocol evoked long-term potentiation (LTP). We determined effects of modification of phosphatase activity on evoked NMDA EPSCs during LTD induction protocols. During LTD induction, using a protocol pairing depolarization to –40 mV and 0.5 Hz stimulation, NMDA receptor-mediated EPSCs undergo a short-term enhancement at the start of the protocol. In neurons in which PP1 activity was inhibited, this short-term enhancement was markedly amplified. We then investigated the effect of this enhancement on Ca2+ entry during the start of the LTD induction protocol. Enhancement of NMDA receptor-mediated responses was accompanied by an amplification of induction protocol-evoked Ca2+ transients. Furthermore, this amplification required synaptic activation during the protocol, consistent with an enhancement of Ca2+ entry mediated by NMDA receptor activation. The sign of NMDA receptor-mediated long-term plasticity, whether potentiation or depression depends on the amplitude of the synaptic Ca2+ transient during induction. We conclude that short-term phosphorylation-dependent plasticity of the NMDA receptor-mediated EPSCs contributes significantly to the effect of phosphatase inhibition on the subsequent induction of LTD or LTP.


2006 ◽  
Vol 1110 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Evgenya Malinina ◽  
Michael Druzin ◽  
Staffan Johansson

Sign in / Sign up

Export Citation Format

Share Document