scholarly journals Meiotic sister chromatid exchanges are rare in C. elegans

2020 ◽  
Author(s):  
David E. Almanzar ◽  
Spencer G. Gordon ◽  
Ofer Rog

AbstractSexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template. Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear, because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common. Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2’-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, sister-directed repair intermediates are efficiently inhibited by the RecQ helicase BLMHIM-6. Second, the Synaptonemal Complex–a conserved interface that promotes crossover repair– localizes between the homologous chromosomes and not the sister chromatids. Our data suggest that in C. elegans crossover pathways are only used to generate the single necessary link between the homologous chromosomes. Almost all other breaks, regardless of which repair template they use, are repaired by noncrossover pathways.

2016 ◽  
Vol 149 (3) ◽  
pp. 218-225 ◽  
Author(s):  
Veit Schubert ◽  
Mateusz Zelkowski ◽  
Sonja Klemme ◽  
Andreas Houben

Due to the X-shape formation at somatic metaphase, the arrangement of the sister chromatids is obvious in monocentric chromosomes. In contrast, the sister chromatids of holocentric chromosomes cannot be distinguished even at mitotic metaphase. To clarify their organization, we differentially labelled the sister chromatids of holocentric Luzula and monocentric rye chromosomes by incorporating the base analogue EdU during replication. Using super-resolution structured illumination microscopy (SIM) and 3D rendering, we found that holocentric sister chromatids attach to each other at their contact surfaces similar to those of monocentrics in prometaphase. We found that sister chromatid exchanges (SCEs) are distributed homogeneously along the whole holocentric chromosomes of Luzula, and that their occurrence is increased compared to monocentric rye chromosomes. The SCE frequency of supernumerary B chromosomes, present additionally to the essential A chromosome complement of rye, does not differ from that of A chromosomes. Based on these results, models of the sister chromatid arrangement in mono- and holocentric plant chromosomes are presented.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 959-972
Author(s):  
Michael Fasullo ◽  
Peter Giallanza ◽  
Zheng Dong ◽  
Cinzia Cera ◽  
Thomas Bennett

Abstract Saccharomyces cerevisiae Rad51 is structurally similar to Escherichia coli RecA. We investigated the role of S. cerevisiae RAD51 in DNA damage-associated unequal sister chromatid exchanges (SCEs), translocations, and inversions. The frequency of these rearrangements was measured by monitoring mitotic recombination between two his3 fragments, his3-Δ5′ and his3-Δ3′::HOcs, when positioned on different chromosomes or in tandem and oriented in direct or inverted orientation. Recombination was measured after cells were exposed to chemical agents and radiation and after HO endonuclease digestion at his3-Δ3′::HOcs. Wild-type and rad51 mutant strains showed no difference in the rate of spontaneous SCEs; however, the rate of spontaneous inversions was decreased threefold in the rad51 mutant. The rad51 null mutant was defective in DNA damage-associated SCE when cells were exposed to either radiation or chemical DNA-damaging agents or when HO endonuclease-induced double-strand breaks (DSBs) were directly targeted at his3-Δ3′::HOcs. The defect in DNA damage-associated SCEs in rad51 mutants correlated with an eightfold higher spontaneous level of directed translocations in diploid strains and with a higher level of radiation-associated translocations. We suggest that S. cerevisiae RAD51 facilitates genomic stability by reducing nonreciprocal translocations generated by RAD51-independent break-induced replication (BIR) mechanisms.


Sign in / Sign up

Export Citation Format

Share Document