lung cell line
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Tessa Prince ◽  
I'ah Donovan-Banfield ◽  
Hannah Goldswain ◽  
Rebekah Penrice-Randal ◽  
Lance Turtle ◽  
...  

Background: The UK Medicines and Regulatory Healthcare Agency (MHRA) have recently licensed the anti-viral drug, molnupiravir, for use in patients with mild-moderate COVID-19 disease with one or more risk factors for serious illness. Treatment with anti-viral drugs is best initiated early to prevent progression to severe disease, although the therapeutic window for intervention has not yet been fully defined. Objectives: This study aimed to determine the activity of the molnupiravir parent drug (NHC) to different SARS-CoV-2 Variants of Concern (VoCs), and to establish the therapeutic window in human lung cell model. Methods: Dose response assays were performed in parallel to determine the IC50 (the concentration of drug required to inhibit virus titre by 50%) of NHC against different variants. Human ACE-2 A549 cells were treated with NHC at different time points either before, during or after infection with SARS-CoV-2. Results: Here we demonstrate that β-D-N4-hydroxycytidine (NHC), the active metabolite of molnupiravir, has equivalent activity against four variants of SARS-CoV-2 in a human lung cell line ranging 0.04-0.16μM IC50. Furthermore, we demonstrate that activity of the drug begins to drop after 48 hours post-infection. Conclusions: One of the main advantages of molnupiravir is that it can be administered orally, and thus given to patients in an out-patient setting. These results support giving the drug early on after diagnosis or even in prophylaxis for individuals with high risk of developing severe disease.


2021 ◽  
Vol 22 (19) ◽  
pp. 10205
Author(s):  
Janina Auth ◽  
Maria Fröba ◽  
Maximilian Große ◽  
Pia Rauch ◽  
Natalia Ruetalo ◽  
...  

Even in the face of global vaccination campaigns, there is still an urgent need for effective antivirals against SARS-CoV-2 and its rapidly spreading variants. Several natural compounds show potential as antiviral substances and have the advantages of broad availabilities and large therapeutic windows. Here, we report that lectin from Triticum vulgaris (Wheat Germ Agglutinin) displays antiviral activity against SARS-CoV-2 and its major Variants of Concern (VoC), Alpha and Beta. In Vero B4 cells, WGA potently inhibits SARS-CoV-2 infection with an IC50 of <10 ng/mL. WGA is effective upon preincubation with the virus or when added during infection. Pull-down assays demonstrate direct binding of WGA to SARS-CoV-2, further strengthening the hypothesis that inhibition of viral entry by neutralizing free virions might be the mode of action behind its antiviral effect. Furthermore, WGA exhibits antiviral activity against human coronavirus OC43, but not against other non-coronaviruses causing respiratory tract infections. Finally, WGA inhibits infection of the lung cell line Calu-3 with wild type and VoC viruses with comparable IC50 values. Altogether, our data indicate that topical administration of WGA might be effective for prophylaxis or treatment of SARS-CoV-2 infections.


2021 ◽  
Author(s):  
Haibo Wu ◽  
Na Xing ◽  
Kaiwen Meng ◽  
Beibei Fu ◽  
Weiwei Xue ◽  
...  

In addition to the mutations on the spike protein (S), co-occurring mutations on nucleocapsid (N) protein are also emerging in SARS-CoV-2 world widely. Mutations R203K/G204R on N, carried by high transmissibility SARS-CoV-2 lineages including B.1.1.7 and P.1, has a rapid spread in the pandemic during the past year. In this study, we performed comprehensive population genomic analyses and virology experiment concerning on the evolution, causation and virology consequence of R203K/G204R mutations. The global incidence frequency (IF) of 203K/204R has rose up from nearly zero to 76% to date with a shrinking from August to November in 2020 but bounced later. Our results show that the emergence of B.1.1.7 is associated with the second growth of R203K/G204R mutants. We identified positive selection evidences that support the adaptiveness of 203K/204R variants. The R203K/G204R mutant virus was created and compared with the native virus. The virus competition experiments show that 203K/204R variants possess a replication advantage over the preceding R203/G204 variants, possibly in relation to the ribonucleocapsid (RNP) assemble during the virus replication. Moreover, the 203K/204R virus increased the infectivity in a human lung cell line and induced an enhanced damage to blood vessel of infected hamsters' lungs. In consistence, we observed a positive association between the increased severity of COVID-19 and the IF of 203K/204R from in silicon analysis of global clinical and epidemic data. In combination with the informatics and virology experiment, our work suggested the contribution of 203K/204R to the increased transmission and virulence of the SARS-CoV-2. In addition to mutations on the S protein, the mutations on the N protein are also important to virus spread during the pandemic.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 647
Author(s):  
Maximilian Große ◽  
Natalia Ruetalo ◽  
Mirjam Layer ◽  
Dan Hu ◽  
Ramona Businger ◽  
...  

While vaccination campaigns are ongoing worldwide, there is still a tremendous medical need for efficient antivirals against SARS-CoV-2 infection. Among several drug candidates, chloroquine (CQN) and hydroxychloroquine (H-CQN) were tested intensively, and any contentious therapeutic effect of both has been discussed controversially in the light of severe side effects and missing efficacy. Originally, H-CQN descended from the natural substance quinine, a medicinal product used since the Middle Ages, which actually is regulatory approved for various indications. We hypothesized that quinine also exerts anti-SARS-CoV-2 activity. In Vero cells, quinine inhibited SARS-CoV-2 infection more effectively than CQN, and H-CQN and was less toxic. In human Caco-2 colon epithelial cells as well as the lung cell line A549 stably expressing ACE2 and TMPRSS2, quinine also showed antiviral activity. In consistence with Vero cells, quinine was less toxic in A549 as compared to CQN and H-CQN. Finally, we confirmed our findings in Calu-3 lung cells, expressing ACE2 and TMPRSS2 endogenously. In Calu-3, infections with high titers of SARS-CoV-2 were completely blocked by quinine, CQN, and H-CQN in concentrations above 50 µM. The estimated IC50s were ~25 µM in Calu-3, while overall, the inhibitors exhibit IC50 values between ~3.7 to ~50 µM, dependent on the cell line and multiplicity of infection (MOI). Conclusively, our data indicate that quinine could have the potential of a treatment option for SARS-CoV-2, as the toxicological and pharmacological profile seems more favorable when compared to its progeny drugs H-CQN or CQN.


2020 ◽  
Vol 8 (12) ◽  
pp. 1872
Author(s):  
Melle Holwerda ◽  
Philip V’kovski ◽  
Manon Wider ◽  
Volker Thiel ◽  
Ronald Dijkman

With over 50 million currently confirmed cases worldwide, including more than 1.3 million deaths, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a major impact on the economy and health care system. Currently, limited prophylactic or therapeutic intervention options are available against SARS-CoV-2. In this study, 400 compounds from the antimicrobial “pandemic response box” library were screened for inhibiting properties against SARS-CoV-2. An initial screen on Vero E6 cells identified five compounds that inhibited SARS-CoV-2 replication. However, validation of the selected hits in a human lung cell line highlighted that only a single compound, namely Retro-2.1, efficiently inhibited SARS-CoV-2 replication. Additional analysis revealed that the antiviral activity of Retro-2.1 occurs at a post-entry stage of the viral replication cycle. Combined, these data demonstrate that stringent in vitro screening of preselected compounds in multiple cell lines refines the rapid identification of new potential antiviral candidate drugs targeting SARS-CoV-2.


2020 ◽  
Author(s):  
Allison Bakovic ◽  
Kenneth Risner ◽  
Nishank Bhalla ◽  
Farhang Alem ◽  
Theresa L. Chang ◽  
...  

AbstractSummarySevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than one million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that can be deployed to safely treat COVID-19 disease and reduce associated morbidity and mortality. Increasing evidence shows that both natural and synthetic antimicrobial peptides (AMPs), also referred to as Host Defense Proteins/Peptides (HDPs), can inhibit SARS-CoV-2, paving the way for the potential clinical use of these molecules as therapeutic options. In this manuscript, we describe the potent antiviral activity exerted by brilacidin—a de novo designed synthetic small molecule that captures the biological properties of HDPs—on SARS-CoV-2 in a human lung cell line (Calu-3) and a monkey cell line (Vero). These data suggest that SARS-CoV-2 inhibition in these cell culture models is primarily a result of the impact of brilacidin on viral entry and its disruption of viral integrity. Brilacidin has demonstrated synergistic antiviral activity when combined with remdesivir. Collectively, our data demonstrate that brilacidin exerts potent inhibition of SARS-CoV-2 and thus supports brilacidin as a promising COVID-19 drug candidate.HighlightsBrilacidin potently inhibits SARS-CoV-2 in an ACE2 positive human lung cell line.Brilacidin achieved a high Selectivity Index of 426 (CC50=241μM/IC50=0.565μM).Brilacidin’s main mechanism appears to disrupt viral integrity and impact viral entry.Brilacidin and remdesivir exhibit excellent synergistic activity against SARS-CoV-2.Significance StatementSARS-CoV-2, the emergent novel coronavirus, has led to the current global COVID-19 pandemic, characterized by extreme contagiousness and high mortality rates. There is an urgent need for effective therapeutic strategies to safely and effectively treat SARS-CoV-2 infection. We demonstrate that brilacidin, a synthetic small molecule with peptide-like properties, is capable of exerting potent in vitro antiviral activity against SARS-CoV-2, both as a standalone treatment and in combination with remdesivir, which is currently the only FDA-approved drug for the treatment of COVID-19.


2020 ◽  
Vol 9 (1) ◽  
pp. 271-279
Author(s):  
Hai-Rong Zhou ◽  
Zhen-Yuan Gao ◽  
Ming-Hong Bi

Sign in / Sign up

Export Citation Format

Share Document