human lung cell line
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Tessa Prince ◽  
I'ah Donovan-Banfield ◽  
Hannah Goldswain ◽  
Rebekah Penrice-Randal ◽  
Lance Turtle ◽  
...  

Background: The UK Medicines and Regulatory Healthcare Agency (MHRA) have recently licensed the anti-viral drug, molnupiravir, for use in patients with mild-moderate COVID-19 disease with one or more risk factors for serious illness. Treatment with anti-viral drugs is best initiated early to prevent progression to severe disease, although the therapeutic window for intervention has not yet been fully defined. Objectives: This study aimed to determine the activity of the molnupiravir parent drug (NHC) to different SARS-CoV-2 Variants of Concern (VoCs), and to establish the therapeutic window in human lung cell model. Methods: Dose response assays were performed in parallel to determine the IC50 (the concentration of drug required to inhibit virus titre by 50%) of NHC against different variants. Human ACE-2 A549 cells were treated with NHC at different time points either before, during or after infection with SARS-CoV-2. Results: Here we demonstrate that β-D-N4-hydroxycytidine (NHC), the active metabolite of molnupiravir, has equivalent activity against four variants of SARS-CoV-2 in a human lung cell line ranging 0.04-0.16μM IC50. Furthermore, we demonstrate that activity of the drug begins to drop after 48 hours post-infection. Conclusions: One of the main advantages of molnupiravir is that it can be administered orally, and thus given to patients in an out-patient setting. These results support giving the drug early on after diagnosis or even in prophylaxis for individuals with high risk of developing severe disease.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2953
Author(s):  
Kai-Wen Cheng ◽  
Shan Li ◽  
Feng Wang ◽  
Nallely M. Ruiz-Lopez ◽  
Nadia Houerbi ◽  
...  

Human coronavirus (HCoV) similar to other viruses rely on host cell machinery for both replication and to spread. The p97/VCP ATPase is associated with diverse pathways that may favor HCoV replication. In this study, we assessed the role of p97 and associated host responses in human lung cell line H1299 after HCoV-229E or HCoV-OC43 infection. Inhibition of p97 function by small molecule inhibitors shows antiviral activity, particularly at early stages of the virus life cycle, during virus uncoating and viral RNA replication. Importantly, p97 activity inhibition protects human cells against HCoV-induced cytopathic effects. The p97 knockdown also inhibits viral production in infected cells. Unbiased quantitative proteomics analyses reveal that HCoV-OC43 infection resulted in proteome changes enriched in cellular senescence and DNA repair during virus replication. Further analysis of protein changes between infected cells with control and p97 shRNA identifies cell cycle pathways for both HCoV-229E and HCoV-OC43 infection. Together, our data indicate a role for the essential host protein p97 in supporting HCoV replication, suggesting that p97 is a therapeutic target to treat HCoV infection.


2021 ◽  
Author(s):  
Haibo Wu ◽  
Na Xing ◽  
Kaiwen Meng ◽  
Beibei Fu ◽  
Weiwei Xue ◽  
...  

In addition to the mutations on the spike protein (S), co-occurring mutations on nucleocapsid (N) protein are also emerging in SARS-CoV-2 world widely. Mutations R203K/G204R on N, carried by high transmissibility SARS-CoV-2 lineages including B.1.1.7 and P.1, has a rapid spread in the pandemic during the past year. In this study, we performed comprehensive population genomic analyses and virology experiment concerning on the evolution, causation and virology consequence of R203K/G204R mutations. The global incidence frequency (IF) of 203K/204R has rose up from nearly zero to 76% to date with a shrinking from August to November in 2020 but bounced later. Our results show that the emergence of B.1.1.7 is associated with the second growth of R203K/G204R mutants. We identified positive selection evidences that support the adaptiveness of 203K/204R variants. The R203K/G204R mutant virus was created and compared with the native virus. The virus competition experiments show that 203K/204R variants possess a replication advantage over the preceding R203/G204 variants, possibly in relation to the ribonucleocapsid (RNP) assemble during the virus replication. Moreover, the 203K/204R virus increased the infectivity in a human lung cell line and induced an enhanced damage to blood vessel of infected hamsters' lungs. In consistence, we observed a positive association between the increased severity of COVID-19 and the IF of 203K/204R from in silicon analysis of global clinical and epidemic data. In combination with the informatics and virology experiment, our work suggested the contribution of 203K/204R to the increased transmission and virulence of the SARS-CoV-2. In addition to mutations on the S protein, the mutations on the N protein are also important to virus spread during the pandemic.


2020 ◽  
Vol 8 (12) ◽  
pp. 1872
Author(s):  
Melle Holwerda ◽  
Philip V’kovski ◽  
Manon Wider ◽  
Volker Thiel ◽  
Ronald Dijkman

With over 50 million currently confirmed cases worldwide, including more than 1.3 million deaths, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a major impact on the economy and health care system. Currently, limited prophylactic or therapeutic intervention options are available against SARS-CoV-2. In this study, 400 compounds from the antimicrobial “pandemic response box” library were screened for inhibiting properties against SARS-CoV-2. An initial screen on Vero E6 cells identified five compounds that inhibited SARS-CoV-2 replication. However, validation of the selected hits in a human lung cell line highlighted that only a single compound, namely Retro-2.1, efficiently inhibited SARS-CoV-2 replication. Additional analysis revealed that the antiviral activity of Retro-2.1 occurs at a post-entry stage of the viral replication cycle. Combined, these data demonstrate that stringent in vitro screening of preselected compounds in multiple cell lines refines the rapid identification of new potential antiviral candidate drugs targeting SARS-CoV-2.


2020 ◽  
Author(s):  
Allison Bakovic ◽  
Kenneth Risner ◽  
Nishank Bhalla ◽  
Farhang Alem ◽  
Theresa L. Chang ◽  
...  

AbstractSummarySevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than one million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that can be deployed to safely treat COVID-19 disease and reduce associated morbidity and mortality. Increasing evidence shows that both natural and synthetic antimicrobial peptides (AMPs), also referred to as Host Defense Proteins/Peptides (HDPs), can inhibit SARS-CoV-2, paving the way for the potential clinical use of these molecules as therapeutic options. In this manuscript, we describe the potent antiviral activity exerted by brilacidin—a de novo designed synthetic small molecule that captures the biological properties of HDPs—on SARS-CoV-2 in a human lung cell line (Calu-3) and a monkey cell line (Vero). These data suggest that SARS-CoV-2 inhibition in these cell culture models is primarily a result of the impact of brilacidin on viral entry and its disruption of viral integrity. Brilacidin has demonstrated synergistic antiviral activity when combined with remdesivir. Collectively, our data demonstrate that brilacidin exerts potent inhibition of SARS-CoV-2 and thus supports brilacidin as a promising COVID-19 drug candidate.HighlightsBrilacidin potently inhibits SARS-CoV-2 in an ACE2 positive human lung cell line.Brilacidin achieved a high Selectivity Index of 426 (CC50=241μM/IC50=0.565μM).Brilacidin’s main mechanism appears to disrupt viral integrity and impact viral entry.Brilacidin and remdesivir exhibit excellent synergistic activity against SARS-CoV-2.Significance StatementSARS-CoV-2, the emergent novel coronavirus, has led to the current global COVID-19 pandemic, characterized by extreme contagiousness and high mortality rates. There is an urgent need for effective therapeutic strategies to safely and effectively treat SARS-CoV-2 infection. We demonstrate that brilacidin, a synthetic small molecule with peptide-like properties, is capable of exerting potent in vitro antiviral activity against SARS-CoV-2, both as a standalone treatment and in combination with remdesivir, which is currently the only FDA-approved drug for the treatment of COVID-19.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 196
Author(s):  
Natalia Conde-Martínez ◽  
Anelize Bauermeister ◽  
Alan Pilon ◽  
Norberto Lopes ◽  
Edisson Tello

Vibrio diabolicus A1SM3 strain was isolated from a sediment sample from Manaure Solar Saltern in La Guajira and the produced crude extracts have shown antibacterial activity against methicillin-resistant Staphylococcus aureus and cytotoxic activity against human lung cell line. Thus, the aim of this research was to identify the main compound responsible for the biological activity observed and to systematically study how each carbon and nitrogen source in the growth media, and variation of the salinity, affect its production. For the characterization of the bioactive metabolites, 15 fractions obtained from Vibrio diabolicus A1SM3 crude extract were analyzed by HPLC-MS/MS and their activity was established. The bioactive fractions were dereplicated with Antibase and Marinlit databases, which combined with nuclear magnetic resonance (NMR) spectra and fragmentation by MS/MS, led to the identification of 2,2-di(3-indolyl)-3-indolone (isotrisindoline), an indole-derivative antibiotic, previously isolated from marine organisms. The influence of the variations of the culture media in isotrisindoline production was established by molecular network and MZmine showing that the media containing starch and peptone at 7% NaCl was the best culture media to produce it. Also, polyhydroxybutyrates (PHB) identification was established by MS/MS mainly in casamino acids media, contributing to the first report on PHB production by this strain.


2016 ◽  
Vol 40 (1) ◽  
pp. 271-282 ◽  
Author(s):  
Yeowool Choi ◽  
Kihong Park ◽  
Injeong Kim ◽  
Sang D. Kim

2013 ◽  
Vol 145 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Carsten Gründemann ◽  
Manuel Garcia-Käufer ◽  
Barbara Sauer ◽  
Evi Stangenberg ◽  
Mathias Könczöl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document