scholarly journals Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors

2020 ◽  
Author(s):  
Sho Iketani ◽  
Farhad Forouhar ◽  
Hengrui Liu ◽  
Seo Jung Hong ◽  
Fang-Yu Lin ◽  
...  

AbstractWe report the identification of three structurally diverse compounds – compound 4, GC376, and MAC-5576 – as inhibitors of the SARS-CoV-2 3CL protease. Structures of each of these compounds in complex with the protease revealed strategies for further development, as well as general principles for designing SARS-CoV-2 3CL protease inhibitors. These compounds may therefore serve as leads for the basis of building effective SARS-CoV-2 3CL protease inhibitors.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sho Iketani ◽  
Farhad Forouhar ◽  
Hengrui Liu ◽  
Seo Jung Hong ◽  
Fang-Yu Lin ◽  
...  

AbstractWe report the identification of three structurally diverse compounds – compound 4, GC376, and MAC-5576 – as inhibitors of the SARS-CoV-2 3CL protease. Structures of each of these compounds in complex with the protease revealed strategies for further development, as well as general principles for designing SARS-CoV-2 3CL protease inhibitors. These compounds may therefore serve as leads for the basis of building effective SARS-CoV-2 3CL protease inhibitors.


Biopolymers ◽  
2016 ◽  
Vol 106 (4) ◽  
pp. 391-403 ◽  
Author(s):  
Kenta Teruya ◽  
Yasunao Hattori ◽  
Yasuhiro Shimamoto ◽  
Kazuya Kobayashi ◽  
Akira Sanjoh ◽  
...  

2020 ◽  
Vol 3 (5) ◽  
pp. 1008-1016
Author(s):  
Wei Zhu ◽  
Miao Xu ◽  
Catherine Z. Chen ◽  
Hui Guo ◽  
Min Shen ◽  
...  

2018 ◽  
Vol 13 (6) ◽  
pp. 1934578X1801300
Author(s):  
Goo Yoon ◽  
Seung Hoon Cheon ◽  
Jung Hyun Shim ◽  
Seung Sik Cho

New derivatives of licochalcone A were synthesized and evaluated for their potential anticancer activities. Compounds 6 (( E)-N-(4-(3-(5-bromo-4-hydroxy-2-methoxy phenyl) acryloyl) phenyl)-4-isopropylbenzamide) and 8 (1-(3-dimethylamino-phenyl)-3-(2-trifluoromethyl-phenyl)-propenone) showed potent activity against the screened cancer cell lines with that of compound 6 ranging from 6.9 ± 0.2 μM to 22.9 ± 3.1 μM, and that of compound 8 from 4.2 ± 0.5 μM to 11.8 ± 0.7 μM. Both compounds showed stronger cytotoxicity than that of licochalcone A. These two candidates have very different substituents and could be considered as promising lead compounds for further development of potent anticancer agents.


2021 ◽  
Vol 8 ◽  
Author(s):  
Junmin Zhang ◽  
Qianhe Xu ◽  
Hong-Ying Yang ◽  
Minghao Yang ◽  
Jianguo Fang ◽  
...  

Natural products frequently have unique physiological activities and new action mechanisms due to their structural diversity and novelty, and are an important source for innovative drugs and lead compounds. We present herein that natural product santamarine targeted thioredoxin reductase (TrxR) to weaken its antioxidative function in cells, accompanied by accumulation of high levels of reactive oxygen species (ROS), and finally induced a new mechanism of tumor cell oxidative stress-mediated apoptosis. TrxR knockdown or overexpression cell lines were employed to further evaluate the cytotoxicity of santamarine regulated by TrxR, demonstrated that TrxR played a key role in the physiological effect of santamarine on cells. Santamarine targeting TrxR reveals its previously unrecognized mechanism of antitumor and provides a basis for the further development of santamarine as a potential cancer therapeutic agent.


2020 ◽  
Vol 27 (3) ◽  
pp. 345-352
Author(s):  
Ramesh Sawant ◽  
Jyoti Wadekar ◽  
Rushikesh Ukirde ◽  
Ganesh Barkade

Background: Cancer is a major cause of death all over the globe. Controlling cell division byinhibition of mitosis is the most successful clinical strategy for cancer treatment. The developmentof novel anticancer agents is the most important area in medicinal chemistry and drug discoveryresearch. Thiazolidine is the multifunctional nucleus which shows a number of pharmacologicalactivities like anticancer, anti-inflammatory, antioxidant, antibacterial, antifungal, antidiabetic,antihyperlipidemic and antiarthritic. Methods: In a present study series of 2-substituted-3-(1H-benzimidazole-2-yl)-thiazolidin-4-ones were designed, synthesized by the microwave-assisted system, and characterized bymelting point, IR, 1H NMR, and mass spectroscopy. All the newly synthesized compoundswere examined for their in vitro anticancer activity against breast cancer cell line MCF-7 bySulforhodamine B (SRB) assay. Results: The compounds AB-12 (GI50: 28.5 μg/ml) and AB-6 (GI50: 50.7 μg/ml) exhibitedsignificant cell growth inhibitory activity. Conclusion: These results indicate that compound AB-12 and AB-6 as related polo-like kinase1inhibitors compounds could be lead compounds for further development of anticanceragents.


2020 ◽  
Author(s):  
Dibakar Goswami ◽  
Mukesh Kumar ◽  
Sunil K. Ghosh ◽  
Amit Das

SARS-CoV-2 or COVID-19 has caused more than 10,00,000 infections and ~55,000 deaths worldwide spanning over 203 countries, and the numbers are exponentially increasing. Due to urgent need of treating the SARS infection, many approved, pre-clinical, anti-viral, anti-malarial and anti-SARS drugs are being administered to patients. SARS-CoV-2 papain-like protease (PLpro) has a protease domain which cleaves the viral polyproteins a/b, necessary for its survival and replication, and is one of the drug target against SARS-CoV-2. 3D structures of SARS-CoV-2 PLpro were built by homology modelling. Two models having partially open and closed conformations were used in our study. Virtual screening of natural product compounds was performed. We prepared an in house library of compounds found in rhizomes, Alpinia officinarum, ginger and curcuma, and docked them into the solvent accessible S3-S4 pocket of PLpro. Eight compounds from Alpinia officinarum and ginger bind with high in silico affinity to closed PLpro conformer, and hence are potential SARS-CoV-2 PLpro inhibitors. Our study reveal new lead compounds targeting SARS-CoV-2. Further structure based modifications or extract formulations of these compounds can lead to highly potent inhibitors to treat SARS-CoV-2 infections.<br>


Sign in / Sign up

Export Citation Format

Share Document