scholarly journals Induction of Ventral Spinal V0 Interneurons from Mouse Embryonic Stem Cells

2020 ◽  
Author(s):  
Jennifer Pardieck ◽  
Manwal Harb ◽  
Shelly Sakiyama-Elbert

AbstractThe ventral spinal population of V0 interneurons (INs) contribute to the coordinated movements directed by spinal central pattern generators (CPGs), including respiratory circuits and left-right alternation. One challenge in studying V0 INs has been the limited number of cells that can be isolated from primary sources for basic research or therapeutic use. However, derivation from a pluripotent source, such as has been done recently for other IN populations could reduce this issue. However, there is currently no protocol to specifically derive V0 interneurons from embryonic stem cells or induced pluripotent stem cells. To generate an induction protocol, mouse embryonic stem cells (mESCs) were grown in suspension culture and then exposed to retinoic acid (RA) and collected at different time points to measure mRNA expression of the V0 progenitor transcription factor marker, Dbx1, and post-mitotic transcription factor marker, Evx1. The cultures were also exposed to the sonic hedgehog signaling pathway agonist purmorphamine (purm) and the Notch signaling pathway inhibitor N-{N-(3,5-difluorophenacetyl-L-alanyl)}-(S)-phenylglycine-t-butyl-ester (DAPT) to determine if either of these pathways contribute to V0 IN induction, specifically the ventral (V0V) subpopulation. From the various parameters tested, the final protocol that generated the greatest percentage of cells expressing V0V IN markers was an 8 day protocol using 4 days of suspension culture to form embryoid bodies followed by addition of 1 μM RA from days 4 to 8, 100 nM purm from days 4 to 6, and 5 μM DAPT from days 6 to 8. This protocol will allow investigators to obtain V0 IN cultures for use in in vitro studies, such as those examining CPG microcircuits, electrophysiological characterization, or even for transplantation studies in injury or disease models.

2007 ◽  
Vol 18 (2) ◽  
pp. 669-677 ◽  
Author(s):  
Shuwen Wang ◽  
Chunguang Hu ◽  
Jiyue Zhu

The human telomerase reverse transcriptase hTERT is highly expressed in undifferentiated embryonic cells and silenced in the majority of somatic cells. To investigate the mechanisms of hTERT silencing, we have developed a novel reporter using a bacterial artificial chromosome (BAC) that contained the entire hTERT gene and its neighboring loci, hCRR9 and hXtrp2. Firefly and Renilla luciferases were used to monitor transcription from the hTERT and hCRR9 promoters, respectively. In mouse embryonic stem cells stably integrated with the BAC reporter, both hTERT and hCRR9 promoters were highly expressed. Upon differentiation into embryoid bodies and further into mineral-producing osteogenic cells, the hTERT promoter activity decreased progressively, whereas the hCRR9 promoter remained highly active, both resembling their endogenous counterparts. In fully differentiated cells, the hTERT promoter was completely silenced and adopted a chromatin structure that was similar to its native counterpart in human cells. Inhibition of histone deacetylases led to the opening of the hTERT promoter and partially relieved repression, suggesting that histone deacetylation was necessary but not sufficient for hTERT silencing. Thus, our result demonstrated that developmental silencing of the human TERT locus could be recapitulated in a chromosomal position-independent manner during the differentiation of mouse embryonic stem cells.


2015 ◽  
Vol 13 (1) ◽  
pp. 720-730 ◽  
Author(s):  
LIPING OU ◽  
LIAOQIONG FANG ◽  
HEJING TANG ◽  
HAI QIAO ◽  
XIAOMEI ZHANG ◽  
...  

2016 ◽  
Vol 2016 (12) ◽  
pp. pdb.prot092429 ◽  
Author(s):  
Richard Behringer ◽  
Marina Gertsenstein ◽  
Kristina Vintersten Nagy ◽  
Andras Nagy

2009 ◽  
Vol 21 (1) ◽  
pp. 236
Author(s):  
E.-M. Jeung ◽  
K.-C. Choi ◽  
E.-B. Jeung

Endocrine disruptors (ED) may have adverse impacts on reproductive and immune systems in human and wild animals. It has been shown that octyl-phenol (OP) and nonyl-phenol (NP) have estrogenicity in estrogen-responding cells or tissues. In this study, we further investigated the effect(s) of OP and NP on the expression of undifferentiation and differentiation markers in mouse embryonic stem cells (ESC), which function as an important factor in the differentiation of ESC into cardiomyocytes. Mouse ESC were cultured in hanging drops to form embryoid bodies (EB). The medium was replaced with phenol red-free DMEM/F-12 supplemented with 5% charcoal-dextran-stripped FBS. The ESC were treated with OP, NP (1Ã-10-6 and 1Ã-10-7 M) or 17β-estradiol (E2; 1Ã-10-8 and 1Ã-10-9 M) in a time-dependent manner (1, 2 and 3 days), and EB were treated with identical concentrations for 4 and 8 days, respectively. High increasing doses of OP and NP were employed in this study because a binding affinity of ED to estrogen receptors (ER) is about 1000 less than that of E2. We determined the mRNA expression of undifferentiation markers (Oct4, Sox2 and Zfp206) and cardiomyocyte differentiation markers (cardiac alpha-MHC, beta-MHC and myosin light chain isoform-2V) using real-time PCR. In ESC, undifferentiation markers were identified. It is of interest that treatment with OP, NP or E2 induced a significant increase (1.4 5.5-fold) in Oct4 expression at the transcription levels according to a dose- and time-dependent manner. However, no difference was observed in the expression of Sox2 and Zfp206 genes in ESC, suggesting that OP and NP may play a role as an Oct4 enhancer in ESC. In addition, both undifferentiation and cardiomyocyte differentiation markers were identified in EB. Treatment with OP and NP induced a significant increase in the expression of Oct4, Sox2 and Zfp206 genes at the transcription levels in a dose-dependent manner for 4 days, whereas Oct4 expression was only induced at these doses for 8 days. In contrast, cardiomyocyte differentiation markers were reduced by these ED in EB. Taken together, these results suggest that OP and NP play a role as a positive regulator in the undifferentiation process of ESC and EB, and maintenance and differentiation of mouse ESC.


Author(s):  
Xiang Sun ◽  
Zhijun Ren ◽  
Yixian Cun ◽  
Cai Zhao ◽  
Xianglin Huang ◽  
...  

Abstract Hippo-YAP signaling pathway functions in early lineage differentiation of pluripotent stem cells, but the detailed mechanisms remain elusive. We found that knockout (KO) of Mst1 and Mst2, two key components of the Hippo signaling in mouse embryonic stem cells (ESCs), resulted in a disruption of differentiation into mesendoderm lineage. To further uncover the underlying regulatory mechanisms, we performed a series of ChIP-seq experiments with antibodies against YAP, ESC master transcription factors and some characterized histone modification markers as well as RNA-seq assays using wild type and Mst KO samples at ES and day 4 embryoid body stage respectively. We demonstrate that YAP is preferentially co-localized with super-enhancer (SE) markers such as Nanog, Sox2, Oct4 and H3K27ac in ESCs. The hyper-activation of nuclear YAP in Mst KO ESCs facilitates the binding of Nanog, Sox2 and Oct4 as well as H3K27ac modification at the loci where YAP binds. Moreover, Mst depletion results in novel SE formation and enhanced liquid-liquid phase-separated Med1 condensates on lineage associated genes, leading to the upregulation of these genes and the distortion of ESC differentiation. Our study reveals a novel mechanism on how Hippo-YAP signaling pathway dictates ESC lineage differentiation.


2013 ◽  
Vol 27 (8) ◽  
pp. 2249-2255 ◽  
Author(s):  
Xiaojiao Chen ◽  
Bo Xu ◽  
Xiumei Han ◽  
Zhilei Mao ◽  
Prue Talbot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document