scholarly journals Intracellular Staphylococcus aureus perturbs the host cell Ca2+-homeostasis to promote cell death

2020 ◽  
Author(s):  
Kathrin Stelzner ◽  
Ann-Cathrin Winkler ◽  
Liang Chunguang ◽  
Carsten P. Ade ◽  
Thomas Dandekar ◽  
...  

AbstractThe opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases ranging from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction and spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide shRNA screen and identified the calcium signaling pathway to be involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+-increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by decrease in endoplasmic reticulum Ca2+-concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+-increase. As a consequence, we observed that the cytoplasmic Ca2+-rise led to increase in mitochondrial Ca2+-concentration, the activation of calpains and caspases and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+-homeostasis and induces cytoplasmic Ca2+-overload, which results in both apoptotic and necrotic cell death in parallel or succession.ImportanceDespite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered as hide-out from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca2+-overload, which results in host cell death. Thus, this study firstly showed how an intracellular bacterium perturbs the host cell Ca2+-homeostasis.

mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e02250-20
Author(s):  
Kathrin Stelzner ◽  
Ann-Cathrin Winkler ◽  
Chunguang Liang ◽  
Aziza Boyny ◽  
Carsten P. Ade ◽  
...  

ABSTRACTThe opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca2+ overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca2+ homeostasis.


Author(s):  
Kathrin Stelzner ◽  
Tobias Hertlein ◽  
Aneta Sroka ◽  
Adriana Moldovan ◽  
Kerstin Paprotka ◽  
...  

AbstractStaphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Intracellularity is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death by intracellular S. aureus after translocation into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. Our study suggests that staphopain A is utilized by S. aureus to mediate escape from the host cell and thus contributes to tissue destruction and dissemination of infection.Author SummaryStaphylococcus aureus is a well-known antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium asymptomatically colonizes the upper respiratory tract and skin of about one third of the human population and takes advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus is not regarded as a professional intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009874
Author(s):  
Kathrin Stelzner ◽  
Aziza Boyny ◽  
Tobias Hertlein ◽  
Aneta Sroka ◽  
Adriana Moldovan ◽  
...  

Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27958 ◽  
Author(s):  
Mamata Gurung ◽  
Dong Chan Moon ◽  
Chi Won Choi ◽  
Jung Hwa Lee ◽  
Yong Chul Bae ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54661 ◽  
Author(s):  
Bernard Thay ◽  
Sun Nyunt Wai ◽  
Jan Oscarsson

2021 ◽  
Vol 11 ◽  
Author(s):  
Dominique Missiakas ◽  
Volker Winstel

Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.


2021 ◽  
Author(s):  
Ye Mon Soe ◽  
Sammy Bedoui ◽  
Timothy P. Stinear ◽  
Abderrahman Hachani

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ayushi Chaurasiya ◽  
Swati Garg ◽  
Ashish Khanna ◽  
Chintam Narayana ◽  
Ved Prakash Dwivedi ◽  
...  

AbstractHijacking of host metabolic status by a pathogen for its regulated dissemination from the host is prerequisite for the propagation of infection. M. tuberculosis secretes an NAD+-glycohydrolase, TNT, to induce host necroptosis by hydrolyzing Nicotinamide adenine dinucleotide (NAD+). Herein, we expressed TNT in macrophages and erythrocytes; the host cells for M. tuberculosis and the malaria parasite respectively, and found that it reduced the NAD+ levels and thereby induced necroptosis and eryptosis resulting in premature dissemination of pathogen. Targeting TNT in M. tuberculosis or induced eryptosis in malaria parasite interferes with pathogen dissemination and reduction in the propagation of infection. Building upon our discovery that inhibition of pathogen-mediated host NAD+ modulation is a way forward for regulation of infection, we synthesized and screened some novel compounds that showed inhibition of NAD+-glycohydrolase activity and pathogen infection in the nanomolar range. Overall this study highlights the fundamental importance of pathogen-mediated modulation of host NAD+ homeostasis for its infection propagation and novel inhibitors as leads for host-targeted therapeutics.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0161965 ◽  
Author(s):  
Daniel Andritschke ◽  
Sabrina Dilling ◽  
Mario Emmenlauer ◽  
Tobias Welz ◽  
Fabian Schmich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document