scholarly journals qFit 3: Protein and ligand multiconformer modeling for X-ray crystallographic and single-particle cryo-EM density maps

2020 ◽  
Author(s):  
Blake T. Riley ◽  
Stephanie A. Wankowicz ◽  
Saulo H. P. de Oliveira ◽  
Gydo C. P. van Zundert ◽  
Daniel Hogan ◽  
...  

AbstractNew X-ray crystallography and cryo-electron microscopy (cryo-EM) approaches yield vast amounts of structural data from dynamic proteins and their complexes. Modeling the full conformational ensemble can provide important biological insights, but identifying and modeling an internally consistent set of alternate conformations remains a formidable challenge. qFit efficiently automates this process by generating a parsimonious multiconformer model. We refactored qFit from a distributed application into software that runs efficiently on a small server, desktop, or laptop. We describe the new qFit 3 software and provide some examples. qFit 3 is open-source under the MIT license, and is available at https://github.com/ExcitedStates/qfit-3.0.

2019 ◽  
Vol 20 (17) ◽  
pp. 4186 ◽  
Author(s):  
Emeka Nwanochie ◽  
Vladimir N. Uversky

Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.


2020 ◽  
Vol 76 (1) ◽  
pp. 63-72
Author(s):  
Lingxiao Zeng ◽  
Wei Ding ◽  
Quan Hao

The combination of cryo-electron microscopy (cryo-EM) and X-ray crystallography reflects an important trend in structural biology. In a previously published study, a hybrid method for the determination of X-ray structures using initial phases provided by the corresponding parts of cryo-EM maps was presented. However, if the target structure of X-ray crystallography is not identical but homologous to the corresponding molecular model of the cryo-EM map, then the decrease in the accuracy of the starting phases makes the whole process more difficult. Here, a modified hybrid method is presented to handle such cases. The whole process includes three steps: cryo-EM map replacement, phase extension by NCS averaging and dual-space iterative model building. When the resolution gap between the cryo-EM and X-ray crystallographic data is large and the sequence identity is low, an intermediate stage of model building is necessary. Six test cases have been studied with sequence identity between the corresponding molecules in the cryo-EM and X-ray structures ranging from 34 to 52% and with sequence similarity ranging from 86 to 91%. This hybrid method consistently produced models with reasonable R work and R free values which agree well with the previously determined X-ray structures for all test cases, thus indicating the general applicability of the method for X-ray structure determination of homologues using cryo-EM maps as a starting point.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 580
Author(s):  
Victor R.A. Dubach ◽  
Albert Guskov

X-ray crystallography and single-particle analysis cryogenic electron microscopy are essential techniques for uncovering the three-dimensional structures of biological macromolecules. Both techniques rely on the Fourier transform to calculate experimental maps. However, one of the crucial parameters, resolution, is rather broadly defined. Here, the methods to determine the resolution in X-ray crystallography and single-particle analysis are summarized. In X-ray crystallography, it is becoming increasingly more common to include reflections discarded previously by traditionally used standards, allowing for the inclusion of incomplete and anisotropic reflections into the refinement process. In general, the resolution is the smallest lattice spacing given by Bragg’s law for a particular set of X-ray diffraction intensities; however, typically the resolution is truncated by the user during the data processing based on certain parameters and later it is used during refinement. However, at which resolution to perform such a truncation is not always clear and this makes it very confusing for the novices entering the structural biology field. Furthermore, it is argued that the effective resolution should be also reported as it is a more descriptive measure accounting for anisotropy and incompleteness of the data. In single particle cryo-EM, the situation is not much better, as multiple ways exist to determine the resolution, such as Fourier shell correlation, spectral signal-to-noise ratio and the Fourier neighbor correlation. The most widely accepted is the Fourier shell correlation using a threshold of 0.143 to define the resolution (so-called “gold-standard”), although it is still debated whether this is the correct threshold. Besides, the resolution obtained from the Fourier shell correlation is an estimate of varying resolution across the density map. In reality, the interpretability of the map is more important than the numerical value of the resolution.


2015 ◽  
Vol 32 (3) ◽  
pp. 436-453 ◽  
Author(s):  
Kira J. Weissman

This review covers a breakthrough in the structural biology of the gigantic modular polyketide synthases (PKS): the structural characterization of intact modules by single-particle cryo-electron microscopy and small-angle X-ray scattering.


PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146457 ◽  
Author(s):  
Noella Silva-Martin ◽  
María I. Daudén ◽  
Sebastian Glatt ◽  
Niklas A. Hoffmann ◽  
Panagiotis Kastritis ◽  
...  

2018 ◽  
Vol 74 (a1) ◽  
pp. a224-a224
Author(s):  
Jason Key ◽  
Peter A. Meyer ◽  
Carol Herre ◽  
Michael Timony ◽  
Dimitry Filonov ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 5-20
Author(s):  
Vittoria Raimondi ◽  
◽  
Alessandro Grinzato ◽  
◽  

<abstract> <p>In the last years, cryogenic-electron microscopy (cryo-EM) underwent the most impressive improvement compared to other techniques used in structural biology, such as X-ray crystallography and NMR. Electron microscopy was invented nearly one century ago but, up to the beginning of the last decades, the 3D maps produced through this technique were poorly detailed, justifying the term “blobbology” to appeal to cryo-EM. Recently, thanks to a new generation of microscopes and detectors, more efficient algorithms, and easier access to computational power, single particles cryo-EM can routinely produce 3D structures at resolutions comparable to those obtained with X-ray crystallography. However, unlike X-ray crystallography, which needs crystallized proteins, cryo-EM exploits purified samples in solution, allowing the study of proteins and protein complexes that are hard or even impossible to crystallize. For these reasons, single-particle cryo-EM is often the first choice of structural biologists today. Nevertheless, before starting a cryo-EM experiment, many drawbacks and limitations must be considered. Moreover, in practice, the process between the purified sample and the final structure could be trickier than initially expected. Based on these observations, this review aims to offer an overview of the principal technical aspects and setups to be considered while planning and performing a cryo-EM experiment.</p> </abstract>


2014 ◽  
Vol 169 ◽  
pp. 265-283 ◽  
Author(s):  
John E. Stone ◽  
Ryan McGreevy ◽  
Barry Isralewitz ◽  
Klaus Schulten

Hybrid structure fitting methods combine data from cryo-electron microscopy and X-ray crystallography with molecular dynamics simulations for the determination of all-atom structures of large biomolecular complexes. Evaluating the quality-of-fit obtained from hybrid fitting is computationally demanding, particularly in the context of a multiplicity of structural conformations that must be evaluated. Existing tools for quality-of-fit analysis and visualization have previously targeted small structures and are too slow to be used interactively for large biomolecular complexes of particular interest today such as viruses or for long molecular dynamics trajectories as they arise in protein folding. We present new data-parallel and GPU-accelerated algorithms for rapid interactive computation of quality-of-fit metrics linking all-atom structures and molecular dynamics trajectories to experimentally-determined density maps obtained from cryo-electron microscopy or X-ray crystallography. We evaluate the performance and accuracy of the new quality-of-fit analysis algorithmsvis-à-visexisting tools, examine algorithm performance on GPU-accelerated desktop workstations and supercomputers, and describe new visualization techniques for results of hybrid structure fitting methods.


Sign in / Sign up

Export Citation Format

Share Document