scholarly journals Reorganization of the neurobiology of language after sentence overlearning

2020 ◽  
Author(s):  
Jeremy I Skipper ◽  
Sarah Aliko ◽  
Stephen Brown ◽  
Yoon Ju Jo ◽  
Serena Lo ◽  
...  

AbstractThere is a widespread assumption that there are a static set of ‘language regions’ in the brain. Yet, people still regularly produce familiar ‘formulaic’ expressions when those regions are severely damaged. This suggests that the neurobiology of language varies with the extent of word sequence learning and might not be fixed. We test the hypothesis that perceiving sentences is mostly supported by sensorimotor regions involved in speech production and not ‘language regions’ after overlearning. Twelve participants underwent two sessions of behavioural testing and functional magnetic resonance imaging (fMRI), separated by 15 days. During this period, they repeated two sentences 30 times each, twice a day. In both fMRI sessions, participants ‘passively’ listened to those two sentences and novel sentences. Lastly, they spoke novel sentences. Behavioural results confirm that participants overlearned sentences. Correspondingly, there was an increase or recruitment of sensorimotor regions involved in sentence production and a reduction in activity or inactivity for overlearned sentences in regions involved in listening to novel sentences. The global network organization of the brain changed by ∼45%, mostly through lost connectivity. Thus, there was a profound reorganization of the neurobiology of speech perception after overlearning towards sensorimotor regions not considered in most contemporary models and away from the ‘language regions’ posited by those models. These same sensorimotor regions are generally preserved in aphasia and Alzheimer’s disease, perhaps explaining residual abilities with formulaic language. These and other results warrant reconsidering static neurobiological models of language.

2016 ◽  
Vol 27 (8) ◽  
pp. 871-885 ◽  
Author(s):  
Golrokh Mirzaei ◽  
Hojjat Adeli

AbstractIn recent years, there has been considerable research interest in the study of brain connectivity using the resting state functional magnetic resonance imaging (rsfMRI). Studies have explored the brain networks and connection between different brain regions. These studies have revealed interesting new findings about the brain mapping as well as important new insights in the overall organization of functional communication in the brain network. In this paper, after a general discussion of brain networks and connectivity imaging, the brain connectivity and resting state networks are described with a focus on rsfMRI imaging in stroke studies. Then, techniques for preprocessing of the rsfMRI for stroke patients are reviewed, followed by brain connectivity processing techniques. Recent research on brain connectivity using rsfMRI is reviewed with an emphasis on stroke studies. The authors hope this paper generates further interest in this emerging area of computational neuroscience with potential applications in rehabilitation of stroke patients.


Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1480-1490 ◽  
Author(s):  
Lorenzo Carnevale ◽  
Angelo Maffei ◽  
Alessandro Landolfi ◽  
Giovanni Grillea ◽  
Daniela Carnevale ◽  
...  

Hypertension is one of the main risk factors for vascular dementia and Alzheimer disease. To predict the onset of these diseases, it is necessary to develop tools to detect the early effects of vascular risk factors on the brain. Resting-state functional magnetic resonance imaging can investigate how the brain modulates its resting activity and analyze how hypertension impacts cerebral function. Here, we used resting-state functional magnetic resonance imaging to explore brain functional-hemodynamic coupling across different regions and their connectivity in patients with hypertension, as compared to subjects with normotension. In addition, we leveraged multimodal imaging to identify the signature of hypertension injury on the brain. Our study included 37 subjects (18 normotensives and 19 hypertensives), characterized by microstructural integrity by diffusion tensor imaging and cognitive profile, who were subjected to resting-state functional magnetic resonance imaging analysis. We mapped brain functional connectivity networks and evaluated the connectivity differences among regions, identifying the altered connections in patients with hypertension compared with subjects with normotension in the (1) dorsal attention network and sensorimotor network; (2) dorsal attention network and visual network; (3) dorsal attention network and frontoparietal network. Then we tested how diffusion tensor imaging fractional anisotropy of superior longitudinal fasciculus correlates with the connections between dorsal attention network and default mode network and Montreal Cognitive Assessment scores with a widespread network of functional connections. Finally, based on our correlation analysis, we applied a feature selection to highlight those most relevant to describing brain injury in patients with hypertension. Our multimodal imaging data showed that hypertensive brains present a network of functional connectivity alterations that correlate with cognitive dysfunction and microstructural integrity. Registration— URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02310217.


Neuroreport ◽  
2005 ◽  
Vol 16 (9) ◽  
pp. 883-886 ◽  
Author(s):  
C.-Y. Peter Chiu ◽  
Martha Coen-Cummings ◽  
Vincent J. Schmithorst ◽  
Scott K. Holland ◽  
Robert Keith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document