scholarly journals The Effect of Grain and Grass Fed Beef and Chicken Breast Consumption on the Functional Connectivity in the Brain Using Resting State Functional Magnetic Resonance Imaging

2019 ◽  
Vol 3 (2) ◽  
pp. 15-15
Author(s):  
E. S. Beyer ◽  
M. F. Miller ◽  
T. H. Davis ◽  
J. F. Legako
2021 ◽  
Vol 15 ◽  
Author(s):  
Ke Song ◽  
Yong Wang ◽  
Mei-Xia Ren ◽  
Jiao Li ◽  
Ting Su ◽  
...  

Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON).Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs.Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs.Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.


2016 ◽  
Vol 27 (8) ◽  
pp. 871-885 ◽  
Author(s):  
Golrokh Mirzaei ◽  
Hojjat Adeli

AbstractIn recent years, there has been considerable research interest in the study of brain connectivity using the resting state functional magnetic resonance imaging (rsfMRI). Studies have explored the brain networks and connection between different brain regions. These studies have revealed interesting new findings about the brain mapping as well as important new insights in the overall organization of functional communication in the brain network. In this paper, after a general discussion of brain networks and connectivity imaging, the brain connectivity and resting state networks are described with a focus on rsfMRI imaging in stroke studies. Then, techniques for preprocessing of the rsfMRI for stroke patients are reviewed, followed by brain connectivity processing techniques. Recent research on brain connectivity using rsfMRI is reviewed with an emphasis on stroke studies. The authors hope this paper generates further interest in this emerging area of computational neuroscience with potential applications in rehabilitation of stroke patients.


Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1480-1490 ◽  
Author(s):  
Lorenzo Carnevale ◽  
Angelo Maffei ◽  
Alessandro Landolfi ◽  
Giovanni Grillea ◽  
Daniela Carnevale ◽  
...  

Hypertension is one of the main risk factors for vascular dementia and Alzheimer disease. To predict the onset of these diseases, it is necessary to develop tools to detect the early effects of vascular risk factors on the brain. Resting-state functional magnetic resonance imaging can investigate how the brain modulates its resting activity and analyze how hypertension impacts cerebral function. Here, we used resting-state functional magnetic resonance imaging to explore brain functional-hemodynamic coupling across different regions and their connectivity in patients with hypertension, as compared to subjects with normotension. In addition, we leveraged multimodal imaging to identify the signature of hypertension injury on the brain. Our study included 37 subjects (18 normotensives and 19 hypertensives), characterized by microstructural integrity by diffusion tensor imaging and cognitive profile, who were subjected to resting-state functional magnetic resonance imaging analysis. We mapped brain functional connectivity networks and evaluated the connectivity differences among regions, identifying the altered connections in patients with hypertension compared with subjects with normotension in the (1) dorsal attention network and sensorimotor network; (2) dorsal attention network and visual network; (3) dorsal attention network and frontoparietal network. Then we tested how diffusion tensor imaging fractional anisotropy of superior longitudinal fasciculus correlates with the connections between dorsal attention network and default mode network and Montreal Cognitive Assessment scores with a widespread network of functional connections. Finally, based on our correlation analysis, we applied a feature selection to highlight those most relevant to describing brain injury in patients with hypertension. Our multimodal imaging data showed that hypertensive brains present a network of functional connectivity alterations that correlate with cognitive dysfunction and microstructural integrity. Registration— URL: https://www.clinicaltrials.gov ; Unique identifier: NCT02310217.


2019 ◽  
Vol 48 (1-2) ◽  
pp. 61-69 ◽  
Author(s):  
Tingting Zhu ◽  
Lingyu Li ◽  
Yulin Song ◽  
Yu Han ◽  
Chengshu Zhou ◽  
...  

Default mode network (DMN) is an important functional brain network that supports aspects of cognition. Stroke has been reported to be associated with functional connectivity (FC) impairments within DMN. However, whether FC within DMN changes in transient ischemic attack (TIA), an important risk factor for stroke, remains unclear. Forty-eight TIA patients and 41 age- and sex-matched healthy controls (HCs) were recruited in this study. Using resting-state functional magnetic resonance imaging seed-based FC methods, we examined FC alterations within DMN in TIA patients, tested its associations with clinical information, and further explored the ability of FC abnormalities to predict follow-up ischemic attacks. We found significantly decreased FC of left middle temporal gyrus/angular gyrus both with medial prefrontal cortex (mPFC) and posterior cingulate cortex/precuneus (PCC/Pcu) and significantly decreased FC among each pair of mPFC, left PCC, and right Pcu in patients with TIA as compared with HCs. Moreover, the connectivity between mPFC and left PCC could predict future ischemic attacks of the patients. Collectively, these findings may provide insights into further understanding of the underlying pathological mechanism in TIA, and aberrant FC between the hubs within DMN may provide a reference for the imaging diagnosis and early intervention of TIA.


Sign in / Sign up

Export Citation Format

Share Document