scholarly journals W-RESP: Well-Restrained Electrostatic Potential Derived Charges. Revisiting the Charge Derivation Model

2020 ◽  
Author(s):  
Michal Janeček ◽  
Petra Kührová ◽  
Vojtěch Mlýnský ◽  
Michal Otyepka ◽  
Jiří Šponer ◽  
...  

ABSTRACTRepresentation of electrostatic interactions by a Coulombic pair-wise potential between atom-centered partial charges is a fundamental and crucial part of empirical force fields used in classical molecular dynamics simulations. The broad success of the AMBER force field family originates mainly from the restrained electrostatic potential (RESP) charge model, which derives partial charges to reproduce the electrostatic field around the molecules. However, description of the electrostatic potential around molecules by standard RESP may be biased for some types of molecules. In this study, we modified the RESP charge derivation model to improve its description of the electrostatic potential around molecules, and thus electrostatic interactions in the force field. In particular, we re-optimized the atomic radii for definition of the grid points around the molecule, redesigned the restraining scheme and included extra point charges. The RESP fitting was significantly improved for aromatic heterocyclic molecules. Thus, the suggested W-RESP(-EP) charge derivation model showed clear potential for improving the performance of the nucleic acid force fields, for which poor description of nonbonded interactions, such as underestimated base pairing, makes it difficult to describe the folding free energy landscape of small oligonucleotides.

2018 ◽  
Author(s):  
Maximiliano Riquelme ◽  
Alejandro Lara ◽  
David L. Mobley ◽  
Toon Vestraelen ◽  
Adelio R Matamala ◽  
...  

<div>Computer simulations of bio-molecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in bio-molecular systems and are therein described by atomic point charges.</div><div>In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute's electron density computed with an implicit solvent model and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the MBIS atomic charge method, including the solvent polarization, with a root mean square error of 2.0 kcal mol<sup>-1</sup> for the 613 organic molecules studied. The largest deviation was observed for phosphor-containing molecules and the molecules with amide, ester and amine functional groups.</div>


2010 ◽  
Vol 75 (5) ◽  
pp. 577-591 ◽  
Author(s):  
Ling Zhang ◽  
J. Ilja Siepmann

The transferable potentials for phase equilibria (TraPPE) force field is extended through the development of a non-polarizable five-site ammonia model. In this model, the electrostatic interactions are represented by three positive partial charges placed at the hydrogen position and a compensating partial charge placed on an M site that is located on the C3 molecular axis and displaced from the nitrogen atom toward the hydrogen atoms. The repulsive and dispersive interactions are represented by placing a single Lennard–Jones site at the position of the nitrogen atom. Starting from the five-site model by Impey and Klein (Chem. Phys. Lett. 1984, 104, 579), this work optimizes the Lennard–Jones parameters and the magnitude of the partial charges for three values of the M site displacement. This parameterization is done by fitting to the vapor–liquid coexistence curve of neat ammonia. The accuracy of the three resulting models (differing in the displacement of the M site) is assessed through computation of the binary vapor–liquid equilibria with methane, the structure and the dielectric constant of liquid ammonia. The five-site model with an intermediate displacement of 0.08 Å for the M site yields a much better value for the dielectric constant, whereas differences in the other properties are quite small.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
W. Wongsinlatam ◽  
T. Remsungnen

Nonbonding parameters of AMBER force field have been refined based onab initiobinding energies of CO2–[C7H5N2]−complexes. The energy and geometry scaling factors are obtained to be 1.2 and 0.9 forεandσparameters, respectively. Molecular dynamics simulations of CO2molecules in rigid framework ZIF-11, have then been performed using original AMBER parameters (SIM I) and refined parameters (SIM II), respectively. The site-site radial distribution functions and the molecular distribution plots simulations indicate that all hydrogen atoms are favored binding site of CO2molecules. One slight but notable difference is that CO2molecules are mostly located around and closer to hydrogen atom of imidazolate ring in SIM II than those found in SIM I. The Zn-Zn and Zn-N RDFs in free flexible framework simulation (SIM III) show validity of adapting AMBER bonding parameters. Due to the limitations of computing resources and times in this study, the results of flexible framework simulation using refined nonbonding AMBER parameters (SIM IV) are not much different from those obtained in SIM II.


Data in Brief ◽  
2016 ◽  
Vol 8 ◽  
pp. 1209-1214 ◽  
Author(s):  
Longhua Yang ◽  
Åge A. Skjevik ◽  
Wen-Ge Han Du ◽  
Louis Noodleman ◽  
Ross C. Walker ◽  
...  

2021 ◽  
Author(s):  
Sebastian Falkner ◽  
Nadine Schwierz

Water exchange between the first and second hydration shell is essential for the role of Mg2+ in biochemical processes. In order to provide microscopic insights into the exchange mechanism, we resolve the exchange pathways by all-atom molecular dynamics simulations and transition path sampling. Since the exchange kinetics relies on the choice of the water model and the ionic force field, we systematically investigate the influence of seven different polarizable and non-polarizable water and three different Mg2+ models. In all cases, water exchange can occur either via an indirect or direct mechanism (exchanging molecules occupy different/same position on water octahedron). In addition, the results reveal a crossover from an interchange dissociative (Id) to an associative (Ia) reaction mechanism dependent on the range of the Mg2+-water interaction potential of the respective force field. Standard non-polarizable force fields follow the Id mechanism in agreement with experimental results. By contrast, polarizable and long-ranged non-polarizable force fields follow the Ia mechanism. Our results provide a comprehensive view on the influence of the water model and ionic force field on the exchange dynamics and the foundation to assess the choice of the force field in biomolecular simulations.


Author(s):  
Falk Hoffmann ◽  
Frans Mulder ◽  
Lars V. Schäfer

The internal dynamics of proteins occurring on time scales from picoseconds to nanoseconds can be sensitively probed by nuclear magnetic resonance (NMR) spin relaxation experiments, as well as by molecular dynamics (MD) simulations. This complementarity offers unique opportunities, provided that the two methods are compared at a suitable level. Recently, several groups have used MD simulations to compute the spectral density of backbone and side-chain molecular motions, and to predict NMR relaxation rates from these. Unfortunately, in the case of methyl groups in protein side-chains, inaccurate energy barriers to methyl rotation were responsible for a systematic discrepancy in the computed relaxation rates, as demonstrated for the AMBER ff99SB*-ILDN force field (and related parameter sets), impairing quantitative agreement between simulations and experiments. However, correspondence could be regained by emending the MD force field with accurate coupled cluster quantum chemical calculations. Spurred by this positive result, we tested whether this approach could be generally applicable, in spite of the fact that different MD force fields employ different water models. Improved methyl group rotation barriers for the CHARMM36 and AMBER ff15ipq protein force fields were derived, such that the NMR relaxation data obtained from the MD simulations now also display very good agreement with experiment. Results herein showcase the performance of present-day MD force fields, and manifest their refined ability to accurately describe internal protein dynamics.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4967 ◽  
Author(s):  
Mustapha Carab Ahmed ◽  
Elena Papaleo ◽  
Kresten Lindorff-Larsen

Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1) to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.


Sign in / Sign up

Export Citation Format

Share Document