scholarly journals A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent in vitro

Author(s):  
Tianshu Xiao ◽  
Jianming Lu ◽  
Jun Zhang ◽  
Rebecca I. Johnson ◽  
Lindsay G.A. McKay ◽  
...  

AbstractEffective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase that forms a dimer and serves as the cellular receptor for SARS-CoV-2. It is also a key negative regulator of the renin-angiotensin system (RAS), conserved in mammals, which modulates vascular functions. We report here the properties of a trimeric ACE2 variant, created by a structure-based approach, with binding affinity of ~60 pM for the spike (S) protein of SARS-CoV-2, while preserving the wildtype peptidase activity as well as the ability to block activation of angiotensin II receptor type 1 in the RAS. Moreover, the engineered ACE2 potently inhibits infection of SARS-CoV-2 in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yue Hu ◽  
Lihuan Liu ◽  
Xifeng Lu

The renin–angiotensin system (RAS) is crucially involved in the physiology and pathology of all organs in mammals. Angiotensin-converting enzyme 2 (ACE2), which is a homolog of ACE, acts as a negative regulator in the homeostasis of RAS. ACE2 has been proven to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic. As SARS-CoV-2 enters the host cells through binding of viral spike protein with ACE2 in humans, the distribution and expression level of ACE2 may be critical for SARS-CoV-2 infection. Growing evidence shows the implication of ACE2 in pathological progression in tissue injury and several chronic conditions such as hypertension, diabetes, and cardiovascular disease; this suggests that ACE2 is essential in the progression and clinical prognosis of COVID-19 as well. Therefore, we summarized the expression and activity of ACE2 under various conditions and regulators. We further discussed its potential implication in susceptibility to COVID-19 and its potential for being a therapeutic target in COVID-19.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hamid Reza Kouhpayeh ◽  
Farhad Tabasi ◽  
Mohammad Dehvari ◽  
Mohammad Naderi ◽  
Gholamreza Bahari ◽  
...  

Abstract Background The COVID-19 pandemic remains an emerging public health crisis with serious adverse effects. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV--2) infection, targeting angiotensin-converting enzyme-2 (ACE2) receptor for cell entry. However, changes in the renin-angiotensin system (RAS) balance alter an individual’s susceptibility to COVID-19 infection. We aimed to evaluate the association between AGT rs699 C > T, ACE rs4646994 I/D, and AGTR1 rs5186 C > A variants and the risk of COVID-19 infection and the severity in a sample of the southeast Iranian population. Methods A total of 504 subjects, including 258 COVID-19 positives, and 246 healthy controls, were recruited. Genotyping of the ACE gene rs4646994, and AGT rs699, and AGTR1 rs5186 polymorphisms was performed by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP), respectively. Results Our results showed that the II genotype of ACE rs4646994 and the I allele decreased the risk of COVID-19 infection. Moreover, we found that the TC genotype and C allele of AGT rs699 increased the risk of COVID-19 infection. The AGTR1 rs5186 was not associated with COVID-19 infection. Also, we did not find any association between these polymorphisms and the severity of the disease. However, we found a significantly higher age and prevalence of diabetes and hypertension in patients with severe disease than a non-severe disease. Conclusions These findings suggest that ACE rs4646994 and AGT rs699 polymorphisms increase the risk of COVID-19 infection in a southeast Iranian population.


2020 ◽  
Vol 126 (10) ◽  
pp. 1456-1474 ◽  
Author(s):  
Mahmoud Gheblawi ◽  
Kaiming Wang ◽  
Anissa Viveiros ◽  
Quynh Nguyen ◽  
Jiu-Chang Zhong ◽  
...  

Author(s):  
Annalise E Zemlin ◽  
Owen J Wiese

Since the first cases of atypical pneumonia linked to the Huanan Seafood Wholesale Market in Wuhan, China, were described in late December 2019, the global landscape has changed radically. In March 2020, the World Health Organization declared COVID-19 a global pandemic, and at the time of writing this review, just over three million individuals have been infected with more than 200,000 deaths globally. Numerous countries are in ‘lockdown’, social distancing is the new norm, even the most advanced healthcare systems are under pressure, and a global economic recession seems inevitable. A novel coronavirus (SARS-CoV-2) was identified as the aetiological agent. From experience with previous coronavirus epidemics, namely the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in 2004 and 2012 respectively, it was postulated that the angiotensin-converting enzyme-2 (ACE2) receptor is a possible port of cell entry. ACE2 is part of the renin-angiotensin system and is also associated with lung and cardiovascular disorders and inflammation. Recent studies have confirmed that ACE2 is the port of entry for SARS-CoV-2. Male sex, advanced age and a number of associated comorbidities have been identified as risk factors for infection with COVID-19. Many high-risk COVID-19 patients with comorbidities are on ACE inhibitors and angiotensin receptor blockers, and this has sparked debate about whether to continue these treatment regimes. Attention has also shifted to ACE2 being a target for future therapies or vaccines against COVID-19. In this review, we discuss COVID-19 and its complex relationship with ACE2.


Sign in / Sign up

Export Citation Format

Share Document