scholarly journals High-Resolution, Large Field-of-View, and Multi-View Single Objective Light-Sheet Microscopy

2020 ◽  
Author(s):  
Bin Yang ◽  
Alfred Millett-Sikking ◽  
Merlin Lange ◽  
Ahmet Can Solak ◽  
Hirofumi Kobayashi ◽  
...  

Light-sheet microscopy has become the preferred method for long-term imaging of large living samples because of its low photo-invasiveness and good optical sectioning capabilities. Unfortunately, refraction and scattering often pose obstacles to light-sheet propagation and limit imaging depth. This is typically addressed by imaging multiple complementary views to obtain high and uniform image quality throughout the sample. However, multi-view imaging often requires complex multi-objective configurations that complicate sample mounting, or sample rotation that decreases imaging speed. Recent developments in single-objective light-sheet microscopy have shown that it is possible to achieve high spatio-temporal resolution with a single objective for both illumination and detection. Here we describe a single-objective light-sheet microscope that achieves: (i) high-resolution and large field-of-view imaging via a custom remote focusing objective; (ii) simpler design and ergonomics by remote placement of coverslips; (iii) fast volumetric imaging by means of light-sheet stabilised stage scanning – a novel scanning modality that extends the imaging volume without compromising imaging speed nor quality; (iv) multi-view imaging by means of dual orthogonal light-sheet illumination. Finally, we demonstrate the speed, field of view and resolution of our novel instrument by imaging zebrafish tail development.

Development ◽  
2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
H.-Arno J. Müller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
Hans-Arno J Mueller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


Author(s):  
Etai Sapoznik ◽  
Bo-Jui Chang ◽  
Jaewon Huh ◽  
Robert J. Ju ◽  
Evgenia V. Azarova ◽  
...  

AbstractWe present an Oblique Plane Microscope that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of Lattice Light-Sheet Microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Etai Sapoznik ◽  
Bo-Jui Chang ◽  
Jaewon Huh ◽  
Robert J Ju ◽  
Evgenia V Azarova ◽  
...  

We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.


2018 ◽  
Author(s):  
Peng Fei ◽  
Jun Nie ◽  
Juhyun Lee ◽  
Yichen Ding ◽  
Shuoran Li ◽  
...  

A key challenge when imaging whole biomedical specimens is how to quickly obtain massive cellular information over a large field of view (FOV). Here, we report a sub-voxel light-sheet microscopy (SLSM) method enabling high-throughput volumetric imaging of mesoscale specimens at cellular-resolution. A non-axial, continuous scanning strategy is used to rapidly acquire a stack of large-FOV images with three-dimensional (3-D) nanoscale shifts encoded. Then by adopting a sub-voxel-resolving procedure, the SLSM method models these low-resolution, cross-correlated images in the spatial domain and iteratively recovers a 3-D image with improved resolution throughout the sample. This technique can surpass the optical limit of a conventional light-sheet microscope by more than three times, with high acquisition speeds of gigavoxels per minute. As demonstrated by quick reconstruction (minutes to hours) of various samples, e.g., 3-D cultured cells, an intact mouse heart, mouse brain, and live zebrafish embryo, the SLSM method presents a high-throughput way to circumvent the tradeoff between intoto mapping of large-scale tissue (>100 mm3) and isotropic imaging of single-cell (~1-μm resolution). It also eliminates the need of complicated mechanical stitching or precisely modulated illumination, using a simple light-sheet setup and fast graphics-processing-unit (GPU)-based computation to achieve high-throughput, high-resolution 3-D microscopy, which could be tailored for a wide range of biomedical applications in pathology, histology, neuroscience, etc.


2016 ◽  
Vol 24 (18) ◽  
pp. 20881 ◽  
Author(s):  
Devynn M. Wulstein ◽  
Kathryn E. Regan ◽  
Rae M. Robertson-Anderson ◽  
Ryan McGorty

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2842 ◽  
Author(s):  
Zhanpeng Xu ◽  
Erik Forsberg ◽  
Yang Guo ◽  
Fuhong Cai ◽  
Sailing He

A novel light-sheet microscopy (LSM) system that uses the laser triangulation method to quantitatively calculate and analyze the surface topography of opaque samples is discussed. A spatial resolution of at least 10 μm in z-direction, 10 μm in x-direction and 25 μm in y-direction with a large field-of-view (FOV) is achieved. A set of sample measurements that verify the system′s functionality in various applications are presented. The system has a simple mechanical structure, such that the spatial resolution is easily improved by replacement of the objective, and a linear calibration formula, which enables convenient system calibration. As implemented, the system has strong potential for, e.g., industrial sample line inspections, however, since the method utilizes reflected/scattered light, it also has the potential for three-dimensional analysis of translucent and layered structures.


2019 ◽  
Author(s):  
Tonmoy Chakraborty ◽  
Meghan Driscoll ◽  
Malea Murphy ◽  
Philippe Roudot ◽  
Bo-Jui Chang ◽  
...  

AbstractWe present cleared tissue Axially Swept Light-Sheet Microscopy (ctASLM), which achieves sub-micron isotropic resolution, high optical sectioning capability, and large field of view imaging (870×870 μm2) over a broad range of immersion media. ctASLM can image live, expanded, and both aqueous and organic chemically cleared tissue preparations and provides 2- to 5-fold better axial resolution than confocal or other reported cleared tissue light-sheet microscopes. We image millimeter-sized tissues with sub-micron 3D resolution, which enabled us to perform automated detection of cells and subcellular features such as dendritic spines.


Cell Research ◽  
2014 ◽  
Vol 25 (2) ◽  
pp. 254-257 ◽  
Author(s):  
Weijian Zong ◽  
Jia Zhao ◽  
Xuanyang Chen ◽  
Yuan Lin ◽  
Huixia Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document