mechanical rotation
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2905
Author(s):  
Khushi Gupta ◽  
Soumya Joshi ◽  
M. B. Srinivas ◽  
Srinivas Boppu ◽  
M. Sabarimalai Manikandan ◽  
...  

mmWave radars play a vital role in autonomous systems, such as unmanned aerial vehicles (UAVs), unmanned surface vehicles (USVs), ground station control and monitoring systems. The challenging task when using mmWave radars is to estimate the accurate angle of arrival (AoA) of the targets, due to the limited number of receivers. In this paper, we present a novel AoA estimation technique, using mmWave FMCW radars operating in the frequency range 77–81 GHz by utilizing the mechanical rotation. Rotating the radar also increases the field of view in both azimuth and elevation. The proposed method estimates the AoA of the targets, using only a single transmitter and receiver. The measurements are carried out in a variety of practical scenarios including pedestrians, a car, and an UAV, also known as a drone. With measured data, range-angle maps are created, and morphological operators are used to estimate the AoA of the targets. We also process radar range-angle images for improved visual representation. The proposed method will be extremely beneficial for practical ground stations, traffic control and monitoring frameworks for both on-ground and airborne vehicles.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hansol Noh ◽  
Paul M. Alsing ◽  
Doyeol Ahn ◽  
Warner A. Miller ◽  
Namkyoo Park

AbstractWe describe the quantum mechanical rotation of a photon state, the Wigner rotation—a quantum effect that couples a transformation of a reference frame to a particle’s spin, to investigate geometric phases induced by Earth’s gravitational field for observers in various orbits. We find a potentially measurable quantum phase of the Wigner rotation angle in addition to the rotation of standard fame, the latter of which is computed and agrees well with the geodetic rotation. When an observer is in either a circular or a spiraling orbit containing non-zero angular momentum, the additional quantum phase contributes 10−6 degree to 10−4 degree respectively, depending on the altitude of the Earth orbit. In the former case, the additional quantum phase is dominant over the near-zero classical geodetic rotation. Our results show that the Wigner rotation represents a non-trivial semi-classical effect of quantum field theory on a background classical gravitational field.


Development ◽  
2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
H.-Arno J. Müller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5513
Author(s):  
Changhe Sun ◽  
Yufei Liu ◽  
Bolun Li ◽  
Wenqu Su ◽  
Mingzhang Luo ◽  
...  

The piezoelectric MEMS (micro-electro-mechanical systems) scanning mirrors are in a great demand for numerous optoelectronic applications. However, the existing actuation strategies are severely limited for poor compatibility with CMOS process, non-linear control, insufficient mirror size and small angular travel. In this paper, a novel, particularly efficient ScAlN-based piezoelectric MEMS mirror with a pupil size of 10 mm is presented. The MEMS mirror consists of a reflection mirror plate, four meandering springs with mechanical rotation transformation, and eight right-angle trapezoidal actuators designed in Union Jack-shaped form. Theoretical modeling, simulations and comparative analysis have been investigated for optimizing two different device designs. For Device A with a 1 mm-length square mirror, the orthogonal and diagonal static tilting angles are ±36.2°@200 VDC and ±36.2°@180 VDC, respectively, and the dynamic tilting angles increases linearly with the driving voltage. Device B with a 10 mm-length square mirror provides the accessible tilting angles of ±36.0°@200 VDC and ±35.9°@180 VDC for horizontal and diagonal actuations, respectively. In the dynamic actuation regime, the orthogonal and diagonal tilting angles at 10 Hz are ±8.1°/Vpp and ±8.9°/Vpp, respectively. This work confirmed that the Union Jack-shaped arrangement of trapezoidal actuators is a promising option for designing powerful optical devices.


2021 ◽  
Vol 33 (7) ◽  
pp. 079902
Author(s):  
Yuexin Liu ◽  
Zonghao Zou ◽  
Alan Cheng Hou Tsang ◽  
On Shun Pak ◽  
Y.-N. Young

2021 ◽  
Vol 33 (6) ◽  
pp. 062007
Author(s):  
Yuexin Liu ◽  
Zonghao Zou ◽  
Alan Chen Hou Tsang ◽  
On Shun Pak ◽  
Y.-N. Young

2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
Hans-Arno J Mueller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Dragan Paunović ◽  

A modern rotating 3D surveillance radars scan azimuth by mechanical rotation, and scan elevation using Active Electronic Scanning Array (AESA) in Multi Beam Receive Mode (MBM). Radars with fixed cylindrical AESA and four-sided prismatic antenna, with 4 flat AESA, scan azimuth electronically, without mechanical rotation. The most significant advantage of electronic scanning is the possibility of Multi-mode operation: surveillance targets in the far zone and targeting targets in the near zone. However, electronic scanning also brings problems. A main beam of planar AESA spreads and lateral lobes increase when the radiating direction increases. An original arrangement of shifted array to reduce lateral lobes has been proposed. The cylindrical array has a constant shape of pattern during azimuth scanning. But, for both prismatic and cylindrical AESA, the beam deforms during scanning in vertical plane, so limits the elevation scan. Also, the complexity and price of fixed AESA is significantly higher compared to the rotating one. In order to enable the selection of the optimal solution for a specific application, the comparative analysis of advantages and disadvantages for cylindrical, prismatic and rotating AESA is done. The original configuration of the cylindrical AESA for Very Fast Scanning in Near-zone has been proposed.


2021 ◽  
Vol 7 (14) ◽  
pp. eabe7377
Author(s):  
Jin-bo Hou ◽  
Nigel C. Hughes ◽  
Melanie J. Hopkins

Whether the upper limb branch of Paleozoic “biramous” arthropods, including trilobites, served a respiratory function has been much debated. Here, new imaging of the trilobite Triarthrus eatoni shows that dumbbell-shaped filaments in the upper limb branch are morphologically comparable with gill structures in crustaceans that aerate the hemolymph. In Olenoides serratus, the upper limb’s partial articulation to the body via an extended arthrodial membrane is morphologically comparable to the junction of the respiratory book gill of Limulus and differentiates it from the typically robust exopod junction in Chelicerata or Crustacea. Apparently limited mechanical rotation of the upper branch may have protected the respiratory structures. Partial attachment of the upper branch to the body wall may represent an intermediate state in the evolution of limb branch fusion between dorsal attachment to the body wall, as in Radiodonta, and ventral fusion to the limb base, as in extant Euarthropoda.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Craig T. Russell ◽  
Pedro P. Vallejo Ramirez ◽  
Eric Rees

AbstractWe present a tomographic reconstruction algorithm (flOPT), which is applied to Optical Projection Tomography (OPT) images, that is robust to mechanical jitter and systematic angular and spatial drift. OPT relies on precise mechanical rotation and is less mechanically stable than large-scale computer tomography (CT) scanning systems, leading to reconstruction artefacts. The algorithm uses multiple (5+) tracked fiducial beads to recover the sample pose and the image rays are then back-projected at each orientation. The quality of the image reconstruction using the proposed algorithm shows an improvement when compared to the Radon transform. Moreover, when adding a systematic spatial and angular mechanical drift, the reconstruction shows a significant improvement over the Radon transform.


Sign in / Sign up

Export Citation Format

Share Document