scholarly journals Promoter-specific changes in initiation, elongation and homeostasis of histone H3 acetylation during CBP/p300 Inhibition

2020 ◽  
Author(s):  
E Hsu ◽  
NR Zemke ◽  
AJ Berk

SummaryRegulation of RNA Polymerase II (Pol2) elongation in the promoter proximal region is an important and ubiquitous control point for gene expression in metazoan cells. We report that transcription of the adenovirus 5 E4 region is regulated during the release of paused Pol2 into productive elongation by recruitment of the super elongation complex (SEC), dependent on promoter H3K18/27 acetylation by CBP/p300. We also establish that this is a general transcriptional regulatory mechanism for ∼6% of genes expressed with FPKM>1 in primary human airway epithelial cells. We observed that a homeostatic mechanism maintains promoter, but not enhancer H3K18/27ac in response to extensive inhibition of CBP/p300 acetyl transferase activity by the highly specific small molecule inhibitor A-485. Further, our results suggest a function for BRD4 association at enhancers in regulating paused Pol2 release at nearby promoters. Taken together, our results uncover processes regulating transcriptional elongation by promoter region histone H3 acetylation and homeostatic maintenance of promoter, but not enhancer, H3K18/27ac in response to inhibition of CBP/p300 acetyl transferase activity.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Emily Hsu ◽  
Nathan R Zemke ◽  
Arnold J Berk

Regulation of RNA Polymerase II (Pol2) elongation in the promoter proximal region is an important and ubiquitous control point for gene expression in metazoans. We report that transcription of the adenovirus 5 E4 region is regulated during the release of paused Pol2 into productive elongation by recruitment of the super elongation complex (SEC), dependent on promoter H3K18/27 acetylation by CBP/p300. We also establish that this is a general transcriptional regulatory mechanism that applies to ~6% of expressed protein-coding genes in primary human airway epithelial cells. We observed that a homeostatic mechanism maintains promoter, but not enhancer H3K18/27ac in response to extensive inhibition of CBP/p300 acetyl transferase activity by the highly specific small molecule inhibitor A-485. Further, our results suggest a function for BRD4 association at enhancers in regulating paused Pol2 release at nearby promoters. Taken together, our results uncover processes regulating transcriptional elongation by promoter region histone H3 acetylation and homeostatic maintenance of promoter, but not enhancer, H3K18/27ac in response to inhibition of CBP/p300 acetyl transferase activity.


2007 ◽  
Vol 27 (22) ◽  
pp. 7886-7894 ◽  
Author(s):  
A. Francesca Setiadi ◽  
Muriel D. David ◽  
Robyn P. Seipp ◽  
Jennifer A. Hartikainen ◽  
Rayshad Gopaul ◽  
...  

ABSTRACT Downregulation of the transporter associated with antigen processing 1 (TAP-1) has been observed in many tumors and is closely associated with tumor immunoevasion mechanisms, growth, and metastatic ability. The molecular mechanisms underlying the relatively low level of transcription of the tap-1 gene in cancer cells are largely unexplained. In this study, we tested the hypothesis that epigenetic regulation plays a fundamental role in controlling tumor antigen processing and immune escape mechanisms. We found that the lack of TAP-1 transcription in TAP-deficient cells correlated with low levels of recruitment of the histone acetyltransferase, CBP, to the TAP-1 promoter. This results in lower levels of histone H3 acetylation at the TAP-1 promoter, leading to a decrease in accessibility of the RNA polymerase II complex to the TAP-1 promoter. These observations suggest that CBP-mediated histone H3 acetylation normally relaxes the chromatin structure around the TAP-1 promoter region, allowing transcription. In addition, we found a hitherto-unknown mechanism wherein interferon gamma up-regulates TAP-1 expression by increasing histone H3 acetylation at the TAP-1 promoter locus. These findings lie at the heart of understanding immune escape mechanisms in tumors and suggest that the reversal of epigenetic codes may provide novel immunotherapeutic paradigms for intervention in cancer.


2015 ◽  
Vol 308 (9) ◽  
pp. L962-L972 ◽  
Author(s):  
Rachel L. Clifford ◽  
Jamie K. Patel ◽  
Alison E. John ◽  
Amanda L. Tatler ◽  
Lisa Mazengarb ◽  
...  

Asthma is characterized by airway inflammation and remodeling and CXCL8 is a CXC chemokine that drives steroid-resistant neutrophilic airway inflammation. We have shown that airway smooth muscle (ASM) cells isolated from asthmatic individuals secrete more CXCL8 than cells from nonasthmatic individuals. Here we investigated chromatin modifications at the CXCL8 promoter in ASM cells from nonasthmatic and asthmatic donors to further understand how CXCL8 is dysregulated in asthma. ASM cells from asthmatic donors had increased histone H3 acetylation, specifically histone H3K18 acetylation, and increased binding of histone acetyltransferase p300 compared with nonasthmatic donors but no differences in CXCL8 DNA methylation. The acetylation reader proteins Brd3 and Brd4 were bound to the CXCL8 promoter and Brd inhibitors inhibited CXCL8 secretion from ASM cells by disrupting Brd4 and RNA polymerase II binding to the CXCL8 promoter. Our results show a novel dysregulation of CXCL8 transcriptional regulation in asthma characterized by a promoter complex that is abnormal in ASM cells isolated from asthmatic donors and can be modulated by Brd inhibitors. Brd inhibitors may provide a new therapeutic strategy for steroid-resistant inflammation.


2011 ◽  
Vol 435 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Takuji Suzuki ◽  
Veronique Douard ◽  
Kazuki Mochizuki ◽  
Toshinao Goda ◽  
Ronaldo P. Ferraris

Metabolic complications arising from excessive fructose consumption are increasing dramatically even in young children, but little is known about ontogenetic mechanisms regulating Glut5 [glucose transporter 5; encoded by the Slc2a5 (solute carrier family 2 member 5) gene]. Glut5 expression is low postnatally and does not increase, unless luminal fructose and systemic glucocorticoids are present, until ≥14 days of age, suggesting substrate-inducible age- and hormone-sensitive regulation. In the present study, we perfused intestines of 10- and 20-day-old rats with either fructose or glucose then analysed the binding of Pol II (RNA polymerase II) and GR (glucocorticoid receptor), as well as acetylation of histones H3 and H4 by chromatin immunoprecipitation. Abundance of Glut5 mRNA increased only with fructose perfusion and age, a pattern that matched that of Pol II binding and histone H3 acetylation to the Glut5 promoter. Although many regions of the Glut5 promoter respond to developmental signals, fewer regions perceive dietary signals. Age- but not fructose-dependent expression of Sglt1 [sodium-dependent glucose co-transporter 1 encoded by the Slc5a1(solute carrier family 5 member 1) gene] also correlated with Pol II binding and histone H3 acetylation. In contrast, G6Pase (glucose-6-phosphatase; encoded by the G6pc gene) expression, which decreases with age and increases with fructose, is associated only with age-dependent changes in histone H4 acetylation. Induction of Glut5 during ontogenetic development appears to be specifically mediated by GR translocation to the nucleus and subsequent binding to the Glut5 promoter, whereas the glucocorticoid-independent regulation of Sglt1 by age was not associated with any GR binding to the Sglt1 promoter.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii287-iii287
Author(s):  
Hiroaki Katagi ◽  
Nozomu Takata ◽  
Yuki Aoi ◽  
Yongzhan Zhang ◽  
Emily J Rendleman ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is highly aggressive brain stem tumor and needed to develop novel therapeutic agents for the treatment. The super elongation complex (SEC) is essential for transcription elongation through release of RNA polymerase II (Pol II). We found that AFF4, a scaffold protein of the SEC, is required for the growth of H3K27M-mutant DIPG cells. In addition, the small molecule SEC inhibitor, KL-1, increased promoter-proximal pausing of Pol II, and reduced transcription elongation, resulting in down-regulate cell cycle, transcription and DNA repair genes. KL-1 treatment decreased cell growth and increased apoptosis in H3K27M-mutant DIPG cells, and prolonged animal survival in our human H3K27M-mutant DIPG xenograft model. Our results demonstrate that the SEC disruption by KL-1 is a novel therapeutic strategy for H3K27M-mutant DIPG.


2007 ◽  
Vol 27 (13) ◽  
pp. 4641-4651 ◽  
Author(s):  
Junjiang Fu ◽  
Ho-Geun Yoon ◽  
Jun Qin ◽  
Jiemin Wong

ABSTRACT P-TEFb, comprised of CDK9 and a cyclin T subunit, is a global transcriptional elongation factor important for most RNA polymerase II (pol II) transcription. P-TEFb facilitates transcription elongation in part by phosphorylating Ser2 of the heptapeptide repeat of the carboxy-terminal domain (CTD) of the largest subunit of pol II. Previous studies have shown that P-TEFb is subjected to negative regulation by forming an inactive complex with 7SK small RNA and HEXIM1. In an effort to investigate the molecular mechanism by which corepressor N-CoR mediates transcription repression, we identified HEXIM1 as an N-CoR-interacting protein. This finding led us to test whether the P-TEFb complex is regulated by acetylation. We demonstrate that CDK9 is an acetylated protein in cells and can be acetylated by p300 in vitro. Through both in vitro and in vivo assays, we identified lysine 44 of CDK9 as a major acetylation site. We present evidence that CDK9 is regulated by N-CoR and its associated HDAC3 and that acetylation of CDK9 affects its ability to phosphorylate the CTD of pol II. These results suggest that acetylation of CDK9 is an important posttranslational modification that is involved in regulating P-TEFb transcriptional elongation function.


Sign in / Sign up

Export Citation Format

Share Document