scholarly journals The strength of a NES motif in the nucleocapsid protein of human coronaviruses is related to genus, but not to pathogenic capacity

2020 ◽  
Author(s):  
Maria Sendino ◽  
Miren Josu Omaetxebarria ◽  
Jose Antonio Rodriguez

ABSTRACTSeven members of the Coronaviridae family infect humans, but only three (SARS-CoV, SARS-CoV-2 and MERS-CoV) cause severe disease with a high case fatality rate. Using in silico analyses (machine learning techniques and comparative genomics), several features associated to coronavirus pathogenicity have been recently proposed, including a potential increase in the strength of a predicted novel nuclear export signal (NES) motif in the nucleocapsid protein.Here, we have used a well-established nuclear export assay to experimentally establish whether the recently proposed nucleocapsid NESs are capable of mediating nuclear export, and to evaluate if their activity correlates with coronavirus pathogenicity.The six NES motifs tested were functional in our assay, but displayed wide differences in export activity. Importantly, these differences in NES strength were not related to strain pathogenicity. Rather, we found that the NESs of the strains belonging to the genus Alphacoronavirus were markedly stronger than the NESs of the strains belonging to the genus Betacoronavirus.We conclude that, while some of the genomic features recently identified in silico could be crucial contributors to coronavirus pathogenicity, this does not appear to be the case of nucleocapsid NES activity, as it is more closely related to coronavirus genus than to pathogenic capacity.

Author(s):  
Ayal B. Gussow ◽  
Noam Auslander ◽  
Guilhem Faure ◽  
Yuri I. Wolf ◽  
Feng Zhang ◽  
...  

AbstractSARS-CoV-2 poses an immediate, major threat to public health across the globe. Here we report an in-depth molecular analysis to reconstruct the evolutionary origins of the enhanced pathogenicity of SARS-CoV-2 and other coronaviruses that are severe human pathogens. Using integrated comparative genomics and machine learning techniques, we identify key genomic features that differentiate SARS-CoV-2 and the viruses behind the two previous deadly coronavirus outbreaks, SARS-CoV and MERS-CoV, from less pathogenic coronaviruses. These features include enhancement of the nuclear localization signals in the nucleocapsid protein and distinct inserts in the spike glycoprotein that appear to be associated with high case fatality rate of these coronaviruses as well as the host switch from animals to humans. The identified features could be crucial elements of coronavirus pathogenicity and possible targets for diagnostics, prognostication and interventions.


2020 ◽  
Vol 117 (26) ◽  
pp. 15193-15199 ◽  
Author(s):  
Ayal B. Gussow ◽  
Noam Auslander ◽  
Guilhem Faure ◽  
Yuri I. Wolf ◽  
Feng Zhang ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an immediate, major threat to public health across the globe. Here we report an in-depth molecular analysis to reconstruct the evolutionary origins of the enhanced pathogenicity of SARS-CoV-2 and other coronaviruses that are severe human pathogens. Using integrated comparative genomics and machine learning techniques, we identify key genomic features that differentiate SARS-CoV-2 and the viruses behind the two previous deadly coronavirus outbreaks, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), from less pathogenic coronaviruses. These features include enhancement of the nuclear localization signals in the nucleocapsid protein and distinct inserts in the spike glycoprotein that appear to be associated with high case fatality rate of these coronaviruses as well as the host switch from animals to humans. The identified features could be crucial contributors to coronavirus pathogenicity and possible targets for diagnostics, prognostication, and interventions.


2012 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mohd Fakharul Zaman Raja Yahya ◽  
Hasidah Mohd Sidek

Malaria parasites, Plasmodium can infect a wide range of hosts including humans and rodents. There are two copies of mitogen activated protein kinases (MAPKs) in Plasmodium, namely MAPK1 and MAPK2. The MAPKs have been studied extensively in the human Plasmodium, P. falciparum. However, the MAPKs from other Plasmodium species have not been characterized and it is therefore the premise of presented study to characterize the MAPKs from other Plasmodium species-P. vivax, P. knowlesi, P. berghei, P. chabaudi and P.yoelli using a series of publicly available bioinformatic tools. In silico data indicates that all Plasmodium MAPKs are nuclear-localized and contain both a nuclear localization signal (NLS) and a Leucine-rich nuclear export signal (NES). The activation motifs of TDY and TSH were found to be fully conserved in Plasmodium MAPK1 and MAPK2, respectively. The detailed manual inspection of a multiple sequence alignment (MSA) construct revealed a total of 17 amino acid stack patterns comprising of different amino acids present in MAPKJ and MAPK2 respectively, with respect to rodent and human Plasmodia. It is proposed that these amino acid stack patterns may be useful in explaining the disparity between rodent and human Plasmodium MAPKs. 


2012 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mohd Fakharul Zaman Raja Yahya ◽  
Hasidah Mohd Sidek

Malaria parasites, Plasmodium can infect a wide range ofhosts including humans and rodents. There are two copies ofmitogen activated protein kinases (MAPKs) in Plasmodium, namely MAPK1 and MAPK2. The MAPKs have been studied extensively in the human Plasmodium, P. falciparum. However, the MAPKs from other Plasmodium species have not been characterized and it is therefore the premise ofpresented study to characterize the MAPKs from other Plasmodium species-P. vivax, P. knowlesi, P. berghei, P. chabaudi and P.yoelli using a series ofpublicly available bioinformatic tools. In silico data indicates that all Plasmodium MAPKs are nuclear-localizedandcontain both a nuclear localization signal (NLS) anda Leucine-rich nuclear export signal (NES). The activation motifs ofTDYand TSH werefound to befully conserved in Plasmodium MAPK1 and MAPK2, respectively. The detailed manual inspection ofa multiple sequence alignment (MSA) construct revealed a total of 17 amino acid stack patterns comprising ofdifferent amino acids present in MAPK1 and MAPK2 respectively, with respect to rodent and human Plasmodia. 1t is proposed that these amino acid stack patterns may be useful in explaining the disparity between rodent and human Plasmodium MAPKs.


2011 ◽  
Vol 411 (5) ◽  
pp. 1114-1127 ◽  
Author(s):  
Mercedes Spínola-Amilibia ◽  
José Rivera ◽  
Miguel Ortiz-Lombardía ◽  
Antonio Romero ◽  
José L. Neira ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e91953 ◽  
Author(s):  
Yawei Shi ◽  
Lei Zhang ◽  
Ting Yang

Virology ◽  
2001 ◽  
Vol 288 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Lin Chen ◽  
Gangling Liao ◽  
Masahiro Fujimuro ◽  
O.John Semmes ◽  
S.Diane Hayward

2021 ◽  
Author(s):  
Xiaohui Xu ◽  
Han Wang ◽  
Jiqin Liu ◽  
Shuying Han ◽  
Miaomiao Lin ◽  
...  

Abstract Background: OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors. OsWRKY62 is predominantly localized in the cytosol. What are the regulatory factors for OsWRKY62 nuclear translocation?Results: In this study, we characterized they interacted with rice importin, OsIMα1a and OsIMα1b, for nuclear translocation. Chimeric OsWRKY62.1-GFP, which is predominantly localized in the cytoplasm, was translocated to the nucleus of Nicotiana benthamiana leaf cells in the presence of OsIMα1a or OsIMαDIBB1a lacking the auto-inhibitory importin β-binding domain. OsIMαDIBB1a interacted with the WRKY domain of OsWRKY62.1, which has specific bipartite positively charged concatenated amino acids functioning as a nuclear localization signal. Similarly, we found that OsIMαDIBB1a interacted with the AvrPib effector of rice blast fungus Magnaporthe oryzae, which contains a scattered distribution of positively charged amino acids. Furthermore, we identified a nuclear export signal in OsWRKY62.1 that inhibited nuclear transportation. Overexpression of OsIMα1a or OsIMα1b enhanced resistance to M. oryzae, whereas knockout mutants decreased resistance to the pathogen. However, overexpressing both OsIMα1a and OsWRKY62.1 were slightly more susceptible to M. oryzae than OsWRKY62.1 alone. Ectopic overexpression of OsWRKY62.1 with an extra nuclear export signal compromised the enhanced susceptibility of OsWRKY62.1 to M. oryzae.Conclusion: These results indicated that OsWRKY62 localization is a consequence of competition binding between rice importins and exportins. OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin α1s through new types of nuclear localization signals for negatively regulating defense responses.


Sign in / Sign up

Export Citation Format

Share Document