scholarly journals Pallidal deep brain stimulation alters cortico-striatal synaptic communication in dystonic hamsters

2020 ◽  
Author(s):  
Marco Heerdegen ◽  
Monique Zwar ◽  
Denise Franz ◽  
Valentin Neubert ◽  
Franz Plocksties ◽  
...  

AbstractBackgroundDeep brain stimulation (DBS) of the globus pallidus internus (GPi) is considered to be the most relevant therapeutic option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the GPi, possibly resulting in thalamic disinhibition. The mechanisms of GPi-DBS are far from understood. Hypotheses range from an overall silencing of target nuclei (due to e.g. depolarisation block), via differential alterations in thalamic firing, to disruption of oscillatory activity in the β-range. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown.ObjectiveWe hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal network function. We aimed to test this hypothesis in the dtsz-hamster, an animal model of inherited generalised, paroxysmal dystonia.MethodsHamsters (dtsz-dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes targeting the entopeduncular nucleus (EPN, equivalent of human GPi). DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 hours. Synaptic cortico-striatal field potential responses, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurons were subsequently recorded in brain slice preparations obtained from these animals immediately after EPN-DBS, to gauge synaptic responsiveness of cortico-striatal projections, their inhibitory control, and striatal neuronal excitability.ResultsDBS increased cortico-striatal responses in slices from control, but not dystonic animals. Inhibitory control of these responses, in turn, was differentially affected: DBS increased inhibitory control in dystonic, and decreased it in healthy tissue. A modulation of presynaptic mechanisms is likely involved, as mEPSC frequency was reduced strongly in dystonic, and less prominently in healthy tissues, while cellular properties of medium-spiny neurons remained unchanged.ConclusionDBS leads to dampening of cortico-striatal communication with restored inhibitory tone.

Epilepsia ◽  
2021 ◽  
Author(s):  
Barbora Deutschová ◽  
Petr Klimeš ◽  
Zsofia Jordan ◽  
Pavel Jurák ◽  
Lorand Erőss ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Belén González-Herrero ◽  
Serge Jauma-Classen ◽  
Roser Gómez-Llopico ◽  
Gerard Plans ◽  
Matilde Calopa

Background. Treatment of freezing of gait (FOG) is always challenging because of its unpredictable nature and multifactorial physiopathology. Intestinal levodopa infusion has been proposed in recent years as a valuable option for its improvement. FOG in Parkinson’s disease (PD) can appear after deep brain stimulation in patients who never had gait symptoms. Objective. To study the effects of intestinal levodopa/carbidopa infusion in unresponsive-FOG that appears in PD patients treated with subthalamic nucleus deep brain stimulation. Methods. We retrospectively collected and analyzed demographic, clinical, and therapeutic data from five PD patients treated with subthalamic nucleus stimulation who developed unresponsive-FOG and received intestinal levodopa/carbidopa infusion as an alternative therapy. FOG was measured based on scores in item 14 of the Unified Parkinson’s Disease Rating Scale before and after intestinal levodopa infusion. Results. Administration of intestinal levodopa caused improvement of FOG in the “ON” state in four patients (80%) by 2 or more points in item 14 of the Unified Parkinson’s Disease Rating Scale. The improvement was maintained for at least 12 months. Conclusions. Intestinal levodopa infusion may be a valuable therapeutic option for unresponsive-FOG developed after subthalamic nucleus deep brain stimulation.


Sign in / Sign up

Export Citation Format

Share Document