scholarly journals Force requirements of endocytic vesicle formation

2020 ◽  
Author(s):  
Marc Abella ◽  
Lynnel Andruck ◽  
Gabriele Malengo ◽  
Michal Skruzny

AbstractMechanical forces are integral to many cellular processes, including clathrin-mediated endocytosis, a principal membrane trafficking route into the cell. During endocytosis, forces provided by endocytic proteins and the polymerizing actin cytoskeleton reshape the plasma membrane into a vesicle. Assessing force requirements of endocytic membrane remodelling is essential for understanding endocytosis. Here, we determined forces applied during endocytosis using FRET-based tension sensors integrated into the major force-transmitting protein Sla2 in yeast. We measured force of approx. 10 pN transmitted over Sla2 molecule, hence a total force of 450-1300 pN required for endocytic vesicle formation. Importantly, decreasing cell turgor pressure and plasma membrane tension reduced force requirements of endocytosis. The measurements in hypotonic conditions and mutants lacking BAR-domain membrane scaffolds then showed the limits of the endocytic force-transmitting machinery. Our study provides force values and force profiles critical for understanding the mechanics of endocytosis and potentially other key cellular membrane-remodelling processes.

2001 ◽  
Vol 28 (7) ◽  
pp. 551 ◽  
Author(s):  
Virginia A. Shepherd ◽  
Teruo Shimmen ◽  
Mary J. Beilby

Chara cells produce receptor potentials (RPDs) in response to mechanical stimulation. We have used a mechanostimulatory device to compare characteristics of touch-activated RPDs and action potentials (APs) when cell turgor pressure was changed. The device delivered a series of mechanical stimulations of increasing energy (F0.5, F1, F2, F3, F4, F5 and F6). Cells were alternately stimulated in artificial pondwater (APW) and a sorbitol series, in long-term experiments, involving up to six solution changes. The calculated cell turgor pressures were about 0.6 MPa (APW), and 0.49 MPa, 0.37 MPa, 0.24 MPa and 0.12 MPa in 50, 100, 150 and 200 mM sorbitol–APW, respectively. In other experiments, cells were pre-conditioned in the sorbitol solutions, and then transferred to APW. All cells were allowed long recovery periods (40–60 min) after APs or solution transfers. Only small changes in cell conductance were observed in I–V and G–V analysis of unstimulated cells after reducing turgor pressure from 0.59 MPa to 0.24 MPa. In APW, the RPDs increased in amplitude and duration with increased stimulus energy until the threshold RPD was reached, and an AP was triggered, usually between stimulus F4 and F5. Cells with decreased turgor pressure became more sensitive to stimulation, giving threshold RPDs or APs with smaller stimulus (e.g. between F0.5 and F3). Conversely, an increase in cell turgor pressure (return to APW) led to a decrease in sensitivity to stimulus. When turgor pressure was greatly decreased (to 0.12 MPa), some cells became unresponsive or gave unusual responses. However, only the mechanical part of the touch response was affected by changing the cell turgor pressure. The mean amplitudes of the subthreshold and threshold RPD (that triggers the AP), and of the touch-activated APs, were independent of cell turgor pressure, although action potentials had smaller amplitude when turgor was reduced to about 0.12 MPa. The amplitude of the subthreshold RPD was close to 20 mV, and the amplitude of the threshold RPD was close to 50 mV, in all cells. If tension of the cell wall–plasma membrane–cytoskeleton complex decreased along with decreased cell turgor pressure, a given stimulus could stretch the complex to a greater extent, resulting in activation of more mechanosensory channels. The effect on the RPD of changes in cell turgor pressure is discussed in relation to the mechanical properties of the cell wall–plasma membrane–cytoskeleton complex.


1998 ◽  
Vol 141 (7) ◽  
pp. 1503-1513 ◽  
Author(s):  
Seng Hui Low ◽  
Steven J. Chapin ◽  
Christian Wimmer ◽  
Sidney W. Whiteheart ◽  
László G. Kömüves ◽  
...  

We have investigated the controversial involvement of components of the SNARE (soluble N-ethyl maleimide–sensitive factor [NSF] attachment protein [SNAP] receptor) machinery in membrane traffic to the apical plasma membrane of polarized epithelial (MDCK) cells. Overexpression of syntaxin 3, but not of syntaxins 2 or 4, caused an inhibition of TGN to apical transport and apical recycling, and leads to an accumulation of small vesicles underneath the apical plasma membrane. All other tested transport steps were unaffected by syntaxin 3 overexpression. Botulinum neurotoxin E, which cleaves SNAP-23, and antibodies against α-SNAP inhibit both TGN to apical and basolateral transport in a reconstituted in vitro system. In contrast, we find no evidence for an involvement of N-ethyl maleimide–sensitive factor in TGN to apical transport, whereas basolateral transport is NSF-dependent. We conclude that syntaxin 3, SNAP-23, and α-SNAP are involved in apical membrane fusion. These results demonstrate that vesicle fusion with the apical plasma membrane does not use a mechanism that is entirely unrelated to other cellular membrane fusion events, but uses isoforms of components of the SNARE machinery, which suggests that they play a role in providing specificity to polarized membrane traffic.


2018 ◽  
Vol 217 (8) ◽  
pp. 2911-2929 ◽  
Author(s):  
Julia Pfanzelter ◽  
Serge Mostowy ◽  
Michael Way

Septins are conserved components of the cytoskeleton that play important roles in many fundamental cellular processes including division, migration, and membrane trafficking. Septins can also inhibit bacterial infection by forming cage-like structures around pathogens such as Shigella. We found that septins are recruited to vaccinia virus immediately after its fusion with the plasma membrane during viral egress. RNA interference–mediated depletion of septins increases virus release and cell-to-cell spread, as well as actin tail formation. Live cell imaging reveals that septins are displaced from the virus when it induces actin polymerization. Septin loss, however, depends on the recruitment of the SH2/SH3 adaptor Nck, but not the activity of the Arp2/3 complex. Moreover, it is the recruitment of dynamin by the third Nck SH3 domain that displaces septins from the virus in a formin-dependent fashion. Our study demonstrates that septins suppress vaccinia release by “entrapping” the virus at the plasma membrane. This antiviral effect is overcome by dynamin together with formin-mediated actin polymerization.


2017 ◽  
Vol 292 (8) ◽  
pp. 3074-3088 ◽  
Author(s):  
Santiago Lima ◽  
Sheldon Milstien ◽  
Sarah Spiegel

The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking.


2017 ◽  
Author(s):  
Joseph Jose Thottacherry ◽  
Anita Joanna Kosmalska ◽  
Alberto Elosegui-Artola ◽  
Susav Pradhan ◽  
Sumit Sharma ◽  
...  

AbstractPlasma membrane tension is an important factor that regulates many key cellular processes. Membrane trafficking is tightly coupled to membrane tension and can modulate the latter by addition or removal of the membrane. However, the cellular pathway(s) involved in these processes are poorly understood. Here we find that, among a number of endocytic processes operating simultaneously at the cell surface, a dynamin and clathrin-independent pathway, the CLIC/GEEC (CG) pathway, is rapidly and specifically upregulated upon reduction of tension. On the other hand, inhibition of the CG pathway results in lower membrane tension, while up regulation significantly enhances membrane tension. We find that vinculin, a well-studied mechanotransducer, mediates the tension-dependent regulation of the CG pathway. Vinculin negatively regulates a key CG pathway regulator, GBF1, at the plasma membrane in a tension dependent manner. Thus, the CG pathway operates in a negative feedback loop with membrane tension which leads to a homeostatic regulation of membrane tension.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 305 ◽  
Author(s):  
Zahumensky ◽  
Malinsky

One of the best characterized fungal membrane microdomains is the MCC/eisosome. The MCC (membrane compartment of Can1) is an evolutionarily conserved ergosterol-rich plasma membrane domain. It is stabilized on its cytosolic face by the eisosome, a hemitubular protein complex composed of Bin/Amphiphysin/Rvs (BAR) domain-containing Pil1 and Lsp1. These two proteins bind directly to phosphatidylinositol 4,5-bisphosphate and promote the typical furrow-like shape of the microdomain, with highly curved edges and bottom. While some proteins display stable localization in the MCC/eisosome, others enter or leave it under particular conditions, such as misbalance in membrane lipid composition, changes in membrane tension, or availability of specific nutrients. These findings reveal that the MCC/eisosome, a plasma membrane microdomain with distinct morphology and lipid composition, acts as a multifaceted regulator of various cellular processes including metabolic pathways, cellular morphogenesis, signalling cascades, and mRNA decay. In this minireview, we focus on the MCC/eisosome’s proposed role in the regulation of lipid metabolism. While the molecular mechanisms of the MCC/eisosome function are not completely understood, the idea of intracellular processes being regulated at the plasma membrane, the foremost barrier exposed to environmental challenges, is truly exciting.


2006 ◽  
Vol 172 (2) ◽  
pp. 269-279 ◽  
Author(s):  
Kazuya Tsujita ◽  
Shiro Suetsugu ◽  
Nobunari Sasaki ◽  
Masahiro Furutani ◽  
Tsukasa Oikawa ◽  
...  

The conserved FER-CIP4 homology (FCH) domain is found in the pombe Cdc15 homology (PCH) protein family members, including formin-binding protein 17 (FBP17). However, the amino acid sequence homology extends beyond the FCH domain. We have termed this region the extended FC (EFC) domain. We found that FBP17 coordinated membrane deformation with actin cytoskeleton reorganization during endocytosis. The EFC domains of FBP17, CIP4, and other PCH protein family members show weak homology to the Bin-amphiphysin-Rvs (BAR) domain. The EFC domains bound strongly to phosphatidylserine and phosphatidylinositol 4,5-bisphosphate and deformed the plasma membrane and liposomes into narrow tubules. Most PCH proteins possess an SH3 domain that is known to bind to dynamin and that recruited and activated neural Wiskott-Aldrich syndrome protein (N-WASP) at the plasma membrane. FBP17 and/or CIP4 contributed to the formation of the protein complex, including N-WASP and dynamin-2, in the early stage of endocytosis. Furthermore, knockdown of endogenous FBP17 and CIP4 impaired endocytosis. Our data indicate that PCH protein family members couple membrane deformation to actin cytoskeleton reorganization in various cellular processes.


2021 ◽  
Author(s):  
F. El Alaoui ◽  
I. Casuso ◽  
D. Sanchez-Fuentes ◽  
C. André-Arpin ◽  
R. Rathar ◽  
...  

AbstractClathrin-mediated endocytosis is a paradigm of a cellular processes that is orchestrated by phosphoinositides, where the plasma membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an instrumental role in the formation of clathrin-coated structures. Among the early endocytic proteins that reach at the plasma membrane, the F-BAR domain only protein 1 and 2 complex (FCHo1/2) is thought to orchestrate the early stages but, the exact mechanism triggering its nucleation on membranes is not well understood. By combining bottom-up synthetic approaches on in vitro and cellular membranes, we show the molecular dynamics of FCHo2 self-assembly on membranes. Our results indicate that PI(4,5)P2 guide the recruitment of FCHo2 at specific regions of the membrane, where it self-assembles into ring-like shape protein patches flanked by membrane invaginations. Importantly, we show that binding of FCHo2 on cellular membranes promotes the enrichment of PI(4,5)P2 at the boundary of specific cargo receptors, such as the epidermal growth factor receptor (EGFR). Thus, our results provide a mechanistic framework that could explain the orchestration of early PI(4,5)P2-interacting proteins recruitment at endocytic sites.


Author(s):  
M.A. Cuadros ◽  
M.J. Martinez-Guerrero ◽  
A. Rios

In the chick embryo retina (days 3-4 of incubation), coinciding with an increase in cell death, specialized phagocytes characterized by intense acid phosphatase activity have been described. In these preparations, all free cells in the vitreal humor (vitreal cells) were strongly labeled. Conventional TEM and SEM techniques were used to characterize them and attempt to determine their relationship with retinal phagocytes.Two types of vitreal cells were distinguished. The first are located at some distance from the basement membrane of the neuroepithelium, and are rounded, with numerous vacuoles and thin cytoplasmic prolongations. Images of exo- and or endocytosis were frequent; the cells showed a well-developed Golgi apparatus (Fig. 1) In SEM images, the cells was covered with short cellular processes (Fig. 3). Cells lying parallel to or alongside the basement membrane are elongated. The plasma membrane is frequently in intimate contact with the basement membrane. These cells have generally a large cytoplasmic expansion (Fig. 5).


Sign in / Sign up

Export Citation Format

Share Document