scholarly journals Aversive Conditioning of Spatial Position Sharpens Neural Population-level Tuning in Visual Cortex and Selectively Reduces Alpha-band Activity

2020 ◽  
Author(s):  
Wendel M. Friedl ◽  
Andreas Keil

AbstractProcessing capabilities for many low-level visual features are experientially malleable, aiding sighted organisms in adapting to dynamic environments. Explicit instructions to attend a specific visual field location influence retinotopic visuocortical activity, amplifying responses to stimuli appearing at cued spatial positions. It remains undetermined, however, both how such prioritization affects surrounding non-prioritized locations, and if a given retinotopic spatial position can attain enhanced cortical representation through experience rather than instruction. This work examined visuocortical response changes as human observers learned, through differential classical conditioning, to associate specific on-screen locations with aversive outcomes. Using dense-array EEG and pupillometry, we tested the pre-registered hypotheses of either sharpening or generalization around an aversively associated location following a single conditioning session. Specifically, competing hypotheses tested if mean response changes would take the form of a gaussian (generalization) or difference-of-gaussian (sharpening) distribution over spatial positions, peaking at the viewing location paired with a noxious noise. Occipital 15 Hz steady-state visual evoked potential (ssVEP) responses were selectively heightened when viewing aversively paired locations and displayed a non-linear, difference-of-gaussian profile across neighboring locations, consistent with suppressive surround modulation of non-prioritized positions. Measures of alpha band (8 – 12.8 Hz) activity and pupil diameter also exhibited selectively heightened responses to noise-paired locations but did not evince any difference across the non-paired locations. These results indicate that visuocortical spatial representations are sharpened in response to location-specific aversive conditioning, while top-down influences indexed by alpha power reduction exhibit all-or-none modulation.Significance StatementIt is increasingly recognized that early visual cortex is not a static processor of physical features, but is instead constantly shaped by perceptual experience. It remains unclear, however, to what extent the cortical representation of many fundamental features, including visual field location, is malleable by experience. Using EEG and an aversive classical conditioning paradigm, we observed sharpening of visuocortical responses to stimuli appearing at aversively associated locations along with location-selective facilitation of response systems indexed by pupil diameter and EEG alpha power. These findings highlight the experience-dependent flexibility of retinotopic spatial representations in visual cortex, opening avenues towards novel treatment targets in disorders of attention and spatial cognition.

2020 ◽  
Vol 30 (06) ◽  
pp. 2050026 ◽  
Author(s):  
Filip Stojic ◽  
Tom Chau

Brain–computer interfaces (BCIs) can provide a means of communication to individuals with severe motor disorders, such as those presenting as locked-in. Many BCI paradigms rely on motor neural pathways, which are often impaired in these individuals. However, recent findings suggest that visuospatial function may remain intact. This study aimed to determine whether visuospatial imagery, a previously unexplored task, could be used to signify intent in an online electroencephalography (EEG)-based BCI. Eighteen typically developed participants imagined checkerboard arrow stimuli in four quadrants of the visual field in 5-s trials, while signals were collected using 16 dry electrodes over the visual cortex. In online blocks, participants received graded visual feedback based on their performance. An initial BCI pipeline (visuospatial imagery classifier I) attained a mean accuracy of [Formula: see text]% classifying rest against visuospatial imagery in online trials. This BCI pipeline was further improved using restriction to alpha band features (visuospatial imagery classifier II), resulting in a mean pseudo-online accuracy of [Formula: see text]%. Accuracies exceeded the threshold for practical BCIs in 12 participants. This study supports the use of visuospatial imagery as a real-time, binary EEG-BCI control paradigm.


2020 ◽  
Author(s):  
Alexander Zhigalov ◽  
Ole Jensen

AbstractSpatial attention provides a mechanism for respectively enhancing relevant and suppressing irrelevant information. While it is well-established that attention modulates oscillations in the alpha band, it remains unclear if alpha oscillations are involved in directly modulating the neuronal excitability associated with the allocation of spatial attention. In this study in humans, we utilized a novel broadband frequency (60 – 70 Hz) tagging paradigm to quantify neuronal excitability in relation to alpha oscillations in a spatial attention paradigm. We used magnetoencephalography to characterize ongoing brain activity as it allows for localizing the sources of both the alpha and frequency tagging responses. We found that attentional modulation of alpha power and the frequency tagging response are uncorrelated over trials. Importantly, the neuronal sources of the tagging response were localized in early visual cortex (V1) whereas the sources of the alpha activity were identified around parieto-occipital sulcus. Moreover, we found that attention did not modulate the latency of the frequency tagged responses. Our findings point to alpha band oscillations serving a downstream gating role rather than implementing gain control of excitability in early visual regions.Significance StatementBy combining magnetoencephalography and a novel broadband frequency tagging approach, we show that spatial attention differently modulates alpha oscillations and neuronal excitability. Importantly, the sources of the alpha oscillations and tagging responses were spatially distinct and the alpha power and tagging response were not related over trials. These results are inconsistent with previous ideas suggesting that alpha oscillations are involved in gain control of early sensory regions; rather alpha oscillations are involved in the allocation of neuronal resources in downstream regions.


Author(s):  
Edward H Silson ◽  
Peter Zeidman ◽  
Tomas Knapen ◽  
Chris I Baker

AbstractThe initial encoding of visual information primarily from the contralateral visual field is a fundamental organizing principle of the primate visual system. Recently, the presence of such retinotopic sensitivity has been shown to extend well beyond early visual cortex to regions not historically considered retinotopically sensitive. In particular, human scene-selective regions in parahippocampal and medial parietal cortex exhibit prominent biases for the contralateral visual field. Here we used fMRI to test the hypothesis that the human hippocampus, which is thought to be anatomically connected with these scene-selective regions, would also exhibit a biased representation of contralateral visual space. First, population receptive field mapping with scene stimuli revealed strong biases for the contralateral visual field in bilateral hippocampus. Second, the distribution of retinotopic sensitivity suggested a more prominent representation in anterior medial portions of the hippocampus. Finally, the contralateral bias was confirmed in independent data taken from the Human Connectome Project initiative. The presence of contralateral biases in the hippocampus – a structure considered by many as the apex of the visual hierarchy - highlights the truly pervasive influence of retinotopy. Moreover, this finding has important implications for understanding how this information relates to the allocentric global spatial representations known to be encoded therein.Significance StatementRetinotopic encoding of visual information is an organizing principle of visual cortex. Recent work demonstrates this sensitivity in structures far beyond early visual cortex, including those anatomically connected to the hippocampus. Here, using population receptive field modelling in two independent sets of data we demonstrate a consistent bias for the contralateral visual field in bilateral hippocampus. Such a bias highlights the truly pervasive influence of retinotopy, with important implications for understanding how the presence of retinotopy relates to more allocentric spatial representations.


Author(s):  
Xiaolian Li ◽  
Qi Zhu ◽  
Wim Vanduffel

AbstractThe visuotopic organization of dorsal visual cortex rostral to area V2 in primates has been a longstanding source of controversy. Using sub-millimeter phase-encoded retinotopic fMRI mapping, we recently provided evidence for a surprisingly similar visuotopic organization in dorsal visual cortex of macaques compared to previously published maps in New world monkeys (Zhu and Vanduffel, Proc Natl Acad Sci USA 116:2306–2311, 2019). Although individual quadrant representations could be robustly delineated in that study, their grouping into hemifield representations remains a major challenge. Here, we combined in-vivo high-resolution myelin density mapping based on MR imaging (400 µm isotropic resolution) with fine-grained retinotopic fMRI to quantitatively compare myelin densities across retinotopically defined visual areas in macaques. Complementing previously documented differences in populational receptive-field (pRF) size and visual field signs, myelin densities of both quadrants of the dorsolateral posterior area (DLP) and area V3A are significantly different compared to dorsal and ventral area V3. Moreover, no differences in myelin density were observed between the two matching quadrants belonging to areas DLP, V3A, V1, V2 and V4, respectively. This was not the case, however, for the dorsal and ventral quadrants of area V3, which showed significant differences in MR-defined myelin densities, corroborating evidence of previous myelin staining studies. Interestingly, the pRF sizes and visual field signs of both quadrant representations in V3 are not different. Although myelin density correlates with curvature and anticorrelates with cortical thickness when measured across the entire cortex, exactly as in humans, the myelin density results in the visual areas cannot be explained by variability in cortical thickness and curvature between these areas. The present myelin density results largely support our previous model to group the two quadrants of DLP and V3A, rather than grouping DLP- with V3v into a single area VLP, or V3d with V3A+ into DM.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


2014 ◽  
Vol 112 (6) ◽  
pp. 1307-1316 ◽  
Author(s):  
Isabel Dombrowe ◽  
Claus C. Hilgetag

The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes.


2018 ◽  
Vol 119 (2) ◽  
pp. 380-388 ◽  
Author(s):  
Alice Tomassini ◽  
Alessandro D’Ausilio

Movement planning and execution rely on the anticipation and online control of the incoming sensory input. Evidence suggests that sensorimotor processes may synchronize visual rhythmic activity in preparation of action performance. Indeed, we recently reported periodic fluctuations of visual contrast sensitivity that are time-locked to the onset of an intended movement of the arm. However, the origin of the observed visual modulations has so far remained unclear because of the endogenous (and thus temporally undetermined) activation of the sensorimotor system that is associated with voluntary movement initiation. In this study, we activated the sensorimotor circuitry involved in the hand control in an exogenous and controlled way by means of peripheral stimulation of the median nerve and characterized the spectrotemporal dynamics of the ensuing visual perception. The stimulation of the median nerve triggers robust and long-lasting (∼1 s) alpha-band oscillations in visual perception, whose strength is temporally modulated in a way that is consistent with the changes in alpha power described at the neurophysiological level after sensorimotor stimulation. These findings provide evidence in support of a causal role of the sensorimotor system in modulating oscillatory activity in visual areas with consequences for visual perception. NEW & NOTEWORTHY This study shows that the peripheral activation of the somatomotor hand system triggers long-lasting alpha periodicity in visual perception. This demonstrates that not only the endogenous sensorimotor processes involved in movement preparation but also the passive stimulation of the sensorimotor system can synchronize visual activity. The present work suggests that oscillation-based mechanisms may subserve core (task independent) sensorimotor integration functions.


Sign in / Sign up

Export Citation Format

Share Document