scholarly journals Spatial structure of natural boxwood and the invasive box tree moth can promote coexistence

2020 ◽  
Author(s):  
Léo Ledru ◽  
Jimmy Garnier ◽  
Christiane Gallet ◽  
Camille Noûs ◽  
Sébastien Ibanez

AbstractIn the absence of top-down and bottom-up controls, herbivores eventually exhaust their host plants driving them-selves to extinction. Poorly mobile herbivores may nevertheless go extinct only locally; then recolonize intact plant patches elsewhere, leaving time to previously over-exploited patches to regrow. However most herbivores such as winged insects are highly mobile, which may prevent the formation of spatial heterogeneity.We test if long-distance dispersal can preclude coexistence using the invasion of box tree moth (Cydalima perspectalis) in Europe as a model system. We build a lattice model and estimate the parameters with a combination of field measurements, experimental data and literature sources. Space corresponds either to a realistic boxwood landscape in the Alps, or to theoretical landscapes of various sizes.We find that both species persist under a large range of realistic parameter values, despite a severe reduction in boxwood biomass, with an alternation of outbreaks and near-to-extinction moth densities. Large landscapes are necessary for coexistence, allowing the formation of spatial structure. Low plant regrowth combined with long-distance dispersal could drive moths to extinction, because of resources depletion at the global scale even without a complete synchronization of the local dynamics. The spatial dynamics leads to formation of small plant patches evenly distributed in the landscape, because of a combination of local plant dispersal and global indirect competition between plants through their positive effect on moth population size. Coexistence is favored by such heterogeneous landscapes, because empty patches increase moth mortality during dispersal: the system thus creates its own stability conditions.

2010 ◽  
Vol 37 (12) ◽  
pp. 1175 ◽  
Author(s):  
Lydia K. Guja ◽  
David J. Merritt ◽  
Kingsley W. Dixon

Many coastal plant species are widely distributed, including several pan-global species. Long-distance dispersal and physiological resilience of diaspores (i.e. the plant dispersal unit encompassing the seed and any additional surrounding or attached tissues at dispersal) to adverse environmental conditions are possible contributors to the presence of species over hundreds of kilometres of coastline. Dispersal by water (hydrochory) may occur in coastal habitats. This study investigated diaspore traits considered important for oceanic hydrochorous dispersal, including morphology, buoyancy and survival in seawater, and germination under saline conditions for 13 species common to Holocene dune communities in Western Australia. Of the diaspores of 13 species dominant in this coastal community, 11 floated in seawater, with 7 having >50% of diaspores buoyant after 14 days and some diaspores remaining buoyant for 70 days. Of the 10 species that germinated, diaspores of 9 survived exposure to seawater for up to 70 days. Germination of physiologically dormant seeds contained within indehiscent woody fruits and physically dormant seeds was least affected by time in seawater. The effects of varying concentrations of NaCl (0–500 mM) on germination differed between species, but most were able to recover and germinate when transferred to non-saline water. Three different patterns of salt response were observed. It appears likely a combination of diaspore traits, rather than a single factor, facilitate oceanic hydrochorous dispersal.


NeoBiota ◽  
2021 ◽  
Vol 70 ◽  
pp. 23-42
Author(s):  
Rachel T. Cook ◽  
Samuel F. Ward ◽  
Andrew M. Liebhold ◽  
Songlin Fei

Spotted lanternfly (SLF), Lycorma delicatula (White) (Hemiptera: Fulgoridae), is a non-native planthopper that recently established in the Northeastern United States. Little is known about the spatial dynamics of its invasion and key drivers associated with its regional spread. Here, using field survey data from a total of 241,366 survey locations from 2014–2019 in the eastern USA, we quantified rates of SLF spread and modeled factors associated with the risk of SLF invasion. During the study period, SLF invasion appears to be associated with both short- and long-distance dispersal. On average, the number of newly invaded counties per year increased since initial discovery, with 0–14 long-distance dispersal events per year and median jump distances ranging from 55 to 92 km/year throughout the study period. Radial rates of spread, based on two of the three analysis methods applied, varied from 38.6 to 46.2 km/year. A Cox proportional hazards model suggested that risk of SLF invasion increased with a proxy for human-aided dispersal, human population per county. We anticipate that SLF will continue to spread via both long- and short-distance dispersals, especially via human activities. Efforts to manage SLF populations potentially could target human-mediated movement of SLF to reduce rates of spread.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrew J. Helmstetter ◽  
Richard J. A. Buggs ◽  
Stuart J. Lucas

Abstract Closely related species with a worldwide distribution provide an opportunity to understand evolutionary and biogeographic processes at a global scale. Hazel (Corylus) is an economically important genus of tree and shrub species found in temperate regions of Asia, North America and Europe. Here we use multiple nuclear and chloroplast loci to estimate a time-calibrated phylogenetic tree of the genus Corylus. We model the biogeographic history of this group and the evolutionary history of tree and shrub form. We estimate that multiple Corylus lineages dispersed long distances between Europe and Asia and colonised North America from Asia in multiple independent events. The geographic distribution of tree versus shrub form of species appears to be the result of 4–5 instances of convergent evolution in the past 25 million years. We find extensive discordance between our nuclear and chloroplast trees and potential evidence for chloroplast capture in species with overlapping ranges, suggestive of past introgression. The important crop species C. avellana is estimated to be closely related to C. maxima, C. heterophylla var. thunbergii and the Colurnae subsection. Our study provides a new phylogenetic hypothesis or Corylus and reveals how long-distance dispersal can shape the distribution of biodiversity in temperate plants.


Sign in / Sign up

Export Citation Format

Share Document