scholarly journals Structural basis for the association of PLEKHA7 with membrane-embedded phosphatidylinositol lipids

2020 ◽  
Author(s):  
Alexander E. Aleshin ◽  
Yong Yao ◽  
Amer Iftikhar ◽  
Andrey A. Bobkov ◽  
Jinghua Yu ◽  
...  

SummaryPLEKHA7 (pleckstrin homology domain containing family A member 7) plays key roles in intracellular signaling, cytoskeletal organization and cell adhesion, and is associated with multiple human cancers. The interactions of its pleckstrin homology (PH) domain with membrane phosphatidyl-inositol-phosphate (PIP) lipids, are critical for proper cellular localization and function, and their inhibition is an attractive target for anti-cancer therapy. While structural data can provide insights in this area, little is known about the way in which PLEKHA7 and other PH domains interact with membrane-embedded PIPs. Here we report atomic-resolution structures of the PLEHA7 PH domain and describe the molecular mechanism for its recognition of membrane-bound PIPs. Using X-ray crystallography, nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and isothermal titration calorimetry (ITC), we show – in atomic-level detail – that the interaction of PLEKHA7 with PIPs is multivalent and induces PIP clustering. The PIP binding mechanism is distinct from a discrete one-to-one interaction. Our findings reveal a central role of the membrane assembly in mediating protein-PIP association and provide a roadmap for the design of PLEKHA7-PIP inhibitors.

2000 ◽  
Vol 349 (1) ◽  
pp. 333-342 ◽  
Author(s):  
Gyles COZIER ◽  
Richard SESSIONS ◽  
Joanna R. BOTTOMLEY ◽  
Jon S. REYNOLDS ◽  
Peter J. CULLEN

GAP1IP4BP is a Ras GTPase-activating protein (GAP) that in vitro is regulated by the cytosolic second messenger inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. We have studied Ins(1,3,4,5)P4 binding to GAP1IP4BP, and shown that the inositol phosphate specificity and binding affinity are similar to Ins(1,3,4,5)P4 binding to Bruton's tyrosine kinase (Btk), evidence which suggests a similar mechanism for Ins(1,3,4,5)P4 binding. The crystal structure of the Btk pleckstrin homology (PH) domain in complex with Ins(1,3,4,5)P4 has shown that the binding site is located in a partially buried pocket between the β1/β2- and β3/β4-loops. Many of the residues involved in the binding are conserved in GAP1IP4BP. Therefore we generated a model of the PH domain of GAP1IP4BP in complex with Ins(1,3,4,5)P4 based on the Btk-Ins(1,3,4,5)P4 complex crystal structure. This model had the typical PH domain fold, with the proposed binding site modelling well on the Btk structure. The model has been verified by site-directed mutagenesis of various residues in and around the proposed binding site. These mutations have markedly reduced affinity for Ins(1,3,4,5)P4, indicating a specific and tight fit for the substrate. The model can also be used to explain the specificity of inositol phosphate binding.


2006 ◽  
Vol 17 (11) ◽  
pp. 4856-4865 ◽  
Author(s):  
David E. Hokanson ◽  
Joseph M. Laakso ◽  
Tianming Lin ◽  
David Sept ◽  
E. Michael Ostap

Myo1c is a member of the myosin superfamily that binds phosphatidylinositol-4,5-bisphosphate (PIP2), links the actin cytoskeleton to cellular membranes and plays roles in mechano-signal transduction and membrane trafficking. We located and characterized two distinct membrane binding sites within the regulatory and tail domains of this myosin. By sequence, secondary structure, and ab initio computational analyses, we identified a phosphoinositide binding site in the tail to be a putative pleckstrin homology (PH) domain. Point mutations of residues known to be essential for polyphosphoinositide binding in previously characterized PH domains inhibit myo1c binding to PIP2 in vitro, disrupt in vivo membrane binding, and disrupt cellular localization. The extended sequence of this binding site is conserved within other myosin-I isoforms, suggesting they contain this putative PH domain. We also characterized a previously identified membrane binding site within the IQ motifs in the regulatory domain. This region is not phosphoinositide specific, but it binds anionic phospholipids in a calcium-dependent manner. However, this site is not essential for in vivo membrane binding.


2021 ◽  
Vol 22 (23) ◽  
pp. 12877
Author(s):  
Adrián Pérez-Ramos ◽  
Rabia Ladjouzi ◽  
Abdellah Benachour ◽  
Djamel Drider

Bacteriocins synthesis is initiated from an inactive precursor, which is composed of an N-terminal leader peptide attached to a C-terminal pro-peptide. However, leaderless bacteriocins (LLB) do not possess this N-terminal leader peptide nor undergo post-translational modifications. These atypical bacteriocins are observed to be immediately active after their translation in the cytoplasm. However, although considered to be simple, the biosynthetic pathway of LLB remains to be fully understood. Enterocin DD14 (EntDD14) is a two-peptide LLB produced by Enterococcus faecalis 14, which is a strain isolated from meconium. In silico analysis of DNA encoding EntDD14 located a cluster of 10 genes ddABCDEFGHIJ, where ddE and ddF encode the peculiar DdE and DdF proteins, carrying pleckstrin homology (PH) domains. These modules are quite common in Eucarya proteins and are known to be involved in intracellular signaling or cytoskeleton organization. To elucidate their role within the EntDD14 genetic determinants, we constructed deletion mutants of the ddE and ddF genes. As a result, the mutants were unable to export EntDD14 outside of the cytoplasm even though there was a clear expression of structural genes ddAB encoding EntDD14, and genes ddHIJ encoding an ABC transporter. Importantly, in these mutant strains (ΔddE and ΔddF), EntDD14 was detected by mass spectrometry in the intracellular soluble fraction exerting, upon its accumulation, a toxic effect on the producing strain as revealed by cell-counting and confocal microscopy analysis. Taken together, these results clearly indicate that PH domain-containing proteins, such as DdE and DdF, are involved in the transport of the leaderless two-peptide EntDD14.


2017 ◽  
Vol 474 (4) ◽  
pp. 539-556 ◽  
Author(s):  
Tao Ni ◽  
Antreas C. Kalli ◽  
Fiona B. Naughton ◽  
Luke A. Yates ◽  
Omar Naneh ◽  
...  

Kindlins co-activate integrins alongside talin. They possess, like talin, a FERM domain (4.1-erythrin–radixin–moiesin domain) comprising F0–F3 subdomains, but with a pleckstrin homology (PH) domain inserted in the F2 subdomain that enables membrane association. We present the crystal structure of murine kindlin-3 PH domain determined at a resolution of 2.23 Å and characterise its lipid binding using biophysical and computational approaches. Molecular dynamics simulations suggest flexibility in the PH domain loops connecting β-strands forming the putative phosphatidylinositol phosphate (PtdInsP)-binding site. Simulations with PtdInsP-containing bilayers reveal that the PH domain associates with PtdInsP molecules mainly via the positively charged surface presented by the β1–β2 loop and that it binds with somewhat higher affinity to PtdIns(3,4,5)P3 compared with PtdIns(4,5)P2. Surface plasmon resonance (SPR) with lipid headgroups immobilised and the PH domain as an analyte indicate affinities of 300 µM for PtdIns(3,4,5)P3 and 1 mM for PtdIns(4,5)P2. In contrast, SPR studies with an immobilised PH domain and lipid nanodiscs as the analyte show affinities of 0.40 µM for PtdIns(3,4,5)P3 and no affinity for PtdIns(4,5)P2 when the inositol phosphate constitutes 5% of the total lipids (∼5 molecules per nanodisc). Reducing the PtdIns(3,4,5)P3 composition to 1% abolishes nanodisc binding to the PH domain, as does site-directed mutagenesis of two lysines within the β1–β2 loop. Binding of PtdIns(3,4,5)P3 by a canonical PH domain, Grp1, is not similarly influenced by SPR experimental design. These data suggest a role for PtdIns(3,4,5)P3 clustering in the binding of some PH domains and not others, highlighting the importance of lipid mobility and clustering for the biophysical assessment of protein–membrane interactions.


1995 ◽  
Vol 108 (11) ◽  
pp. 3569-3579
Author(s):  
E. Dellambra ◽  
M. Patrone ◽  
B. Sparatore ◽  
A. Negri ◽  
F. Ceciliani ◽  
...  

The intrinsic signal(s) responsible for the onset of human keratinocyte terminal differentiation is not yet fully understood. Evidence has been recently accumulated linking the phospholipase-mediated activation of protein kinase C to the coordinate changes in gene expression occurring during keratinocyte terminal differentiation. Here we report the purification of a keratinocyte-derived protein enhancing protein kinase C enzymatic activity. The stimulator eluted as a peak with estimated molecular mass of approximately 70 kDa, while analysis by SDS-PAGE showed a 30 kDa protein migrating as a distinct doublet, suggesting the formation of a 30 kDa homodimer. The amino acid sequence analysis allowed the unambigous identification of the protein kinase C stimulator as a mixture of the highly homologous sigma (stratifin) and zeta isoforms of 14–3-3 proteins, which are homodimers of identical 30 kDa subunits. Mono Q anion exchange chromatography and immunoblot analysis further confirmed that stratifin enhances protein kinase C activity. Stratifin was originally sequenced from a human keratinocyte protein database, but its function was unknown. The pleckstrin homology domain has been recently related to protein translocation to the cell membrane as well as to functional interactions of intracellular proteins involved in signal transduction. We show here that stratifin (and 14–3-3 zeta) harbors a pleckstrin homology domain, and the consequent functional implications will be discussed.


2012 ◽  
Vol 287 (15) ◽  
pp. 11981-11990 ◽  
Author(s):  
Wei Zhang ◽  
Yang Zhao ◽  
Yan Guo ◽  
Keqiong Ye

SCAB1 is a novel plant-specific actin-binding protein that binds, bundles, and stabilizes actin filaments and regulates stomatal movement. Here, we dissected the structure and function of SCAB1 by structural and biochemical approaches. We show that SCAB1 is composed of an actin-binding domain, two coiled-coil (CC) domains, and a fused immunoglobulin and pleckstrin homology (Ig-PH) domain. We determined crystal structures for the CC1 and Ig-PH domains at 1.9 and 1.7 Å resolution, respectively. The CC1 domain adopts an antiparallel helical hairpin that further dimerizes into a four-helix bundle. The CC2 domain also mediates dimerization. At least one of the coiled coils is required for actin binding, indicating that SCAB1 is a bivalent actin cross-linker. The key residues required for actin binding were identified. The PH domain lacks a canonical basic phosphoinositide-binding pocket but can bind weakly to inositol phosphates via a basic surface patch, implying the involvement of inositol signaling in SCAB1 regulation. Our results provide novel insights into the functional organization of SCAB1.


2005 ◽  
Vol 16 (4) ◽  
pp. 1883-1900 ◽  
Author(s):  
Maria Fadri ◽  
Alexes Daquinag ◽  
Shimei Wang ◽  
Tao Xue ◽  
Jeannette Kunz

Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] is a key second messenger that regulates actin and membrane dynamics, as well as other cellular processes. Many of the effects of PtdIns(4,5)P2are mediated by binding to effector proteins that contain a pleckstrin homology (PH) domain. Here, we identify two novel effectors of PtdIns(4,5)P2in the budding yeast Saccharomyces cerevisiae: the PH domain containing protein Slm1 and its homolog Slm2. Slm1 and Slm2 serve redundant roles essential for cell growth and actin cytoskeleton polarization. Slm1 and Slm2 bind PtdIns(4,5)P2through their PH domains. In addition, Slm1 and Slm2 physically interact with Avo2 and Bit61, two components of the TORC2 signaling complex, which mediates Tor2 signaling to the actin cytoskeleton. Together, these interactions coordinately regulate Slm1 targeting to the plasma membrane. Our results thus identify two novel effectors of PtdIns(4,5)P2regulating cell growth and actin organization and suggest that Slm1 and Slm2 integrate inputs from the PtdIns(4,5)P2and TORC2 to modulate polarized actin assembly and growth.


2012 ◽  
Vol 287 (40) ◽  
pp. 33706-33718 ◽  
Author(s):  
Toshihiko Sugiki ◽  
Koh Takeuchi ◽  
Toshiyuki Yamaji ◽  
Toshiaki Takano ◽  
Yuji Tokunaga ◽  
...  

2001 ◽  
Vol 21 (20) ◽  
pp. 6895-6905 ◽  
Author(s):  
Hideto Kameda ◽  
John I. Risinger ◽  
Bing-Bing Han ◽  
Seung Joon Baek ◽  
J. Carl Barrett ◽  
...  

ABSTRACT An in vitro transformation system of carcinogen-treated Syrian hamster embryo (SHE) cell cultures represents multistep genetic and nongenetic changes that develop during the neoplastic progression of normal cells to tumor cells in vivo. During this neoplastic progression, SHE cells demonstrate an altered response to epidermal growth factor (EGF). In the present report, we examined the role of the adapter protein Gab1 (Grb2-associated binder-1) in the neoplastic progression of SHE cells. We used two asbestos-transformed SHE cell clones in different neoplastic stages: a 10W+8 clone, which is immortal and retains the ability to suppress the tumorigenicity of tumor cells in cell-cell hybrid experiments, and a 10W−1 clone, which has lost this tumor suppressor ability. 10W+8 cells expressed full-length 100-kDa Gab1 and associated 5.2-kb mRNA. Upon repeated cell passaging, 10W−1 cells showed increasing expression of a novel 87-kDa form of Gab1 as well as 4.6-kb mRNA with diminishing expression of the original 100-kDa Gab1. cDNA encoding the 87-kDa Gab1 predicts a form of Gab1 lacking the amino-terminal 103 amino acids (Gab1Δ1-103), which corresponds to loss of most of the pleckstrin homology (PH) domain. Gab1Δ1-103 retains the ability to be phosphorylated in an EGF-dependent manner and to associate with the EGF receptor and SHP-2 upon EGF stimulation. The endogenous expression of Gab1Δ1-103 in 10W−1 cells appeared closely related to EGF-dependent colony formation in soft agar. Moreover, transfection and expression of Gab1Δ1-103, but not Gab1, in 10W+8 cells enhanced their EGF-dependent colony formation in soft agar. These results demonstrate that Gab1 is a target of carcinogen-induced transformation of SHE cells and that the expression of a Gab1 variant lacking most of the PH domain plays a specific role in the neoplastic progression of SHE cells.


2004 ◽  
Vol 24 (3) ◽  
pp. 1245-1255 ◽  
Author(s):  
Alexias Safi ◽  
Marie Vandromme ◽  
Sabine Caussanel ◽  
Laure Valdacci ◽  
Dominique Baas ◽  
...  

ABSTRACT In this work, we report the implication of the pleckstrin homology (PH) domain-containing protein CKIP-1 in phosphatidylinositol 3-kinase (PI3-K)-regulated muscle differentiation. CKIP-1 is upregulated during muscle differentiation in C2C12 cells. We show that CKIP-1 binds to phosphatidylinositol 3-phosphate through its PH domain and localizes to the plasma membrane in a PI3-K-dependent manner. Activation of PI3-K by insulin or expression of an active form of PI3-K p110 induces a rapid translocation of CKIP-1 to the plasma membrane. Conversely, expression of the 3-phosphoinositide phosphatase myotubularin or PI3-K inhibition by LY294002, wortmannin, or mutant p85 abolishes CKIP-1 binding to the membrane. Upon induction of differentiation in low-serum medium, CKIP-1 overexpression in C2C12 myoblasts first promotes proliferation and then stimulates the expression of myogenin and cell fusion in a manner reminiscent of the dual positive effect of insulin-like growth factors on muscle cells. Interference with the PI3-K pathway impedes the effect of CKIP-1 on C2C12 cell differentiation. Finally, silencing of CKIP-1 by RNA interference abolishes proliferation and delays myogenin expression. Altogether, these data strongly implicate CKIP-1 as a new component of PI3-K signaling in muscle differentiation.


Sign in / Sign up

Export Citation Format

Share Document