scholarly journals Hapo-G, Haplotype-Aware Polishing Of Genome Assemblies

2020 ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from short reads to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


2021 ◽  
Author(s):  
Arang Rhie ◽  
Ann Mc Cartney ◽  
Kishwar Shafin ◽  
Michael Alonge ◽  
Andrey Bzikadze ◽  
...  

Abstract Advances in long-read sequencing technologies and genome assembly methods have enabled the recent completion of the first Telomere-to-Telomere (T2T) human genome assembly, which resolves complex segmental duplications and large tandem repeats, including centromeric satellite arrays in a complete hydatidiform mole (CHM13). Though derived from highly accurate sequencing, evaluation revealed that the initial T2T draft assembly had evidence of small errors and structural misassemblies. To correct these errors, we designed a novel repeat-aware polishing strategy that made accurate assembly corrections in large repeats without overcorrection, ultimately fixing 51% of the existing errors and improving the assembly QV to 73.9. By comparing our results to standard automated polishing tools, we outline common polishing errors and offer practical suggestions for genome projects with limited resources. We also show how sequencing biases in both PacBio HiFi and Oxford Nanopore Technologies reads cause signature assembly errors that can be corrected with a diverse panel of sequencing technologies


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Cheng He ◽  
Guifang Lin ◽  
Hairong Wei ◽  
Haibao Tang ◽  
Frank F White ◽  
...  

Abstract Genome sequences provide genomic maps with a single-base resolution for exploring genetic contents. Sequencing technologies, particularly long reads, have revolutionized genome assemblies for producing highly continuous genome sequences. However, current long-read sequencing technologies generate inaccurate reads that contain many errors. Some errors are retained in assembled sequences, which are typically not completely corrected by using either long reads or more accurate short reads. The issue commonly exists, but few tools are dedicated for computing error rates or determining error locations. In this study, we developed a novel approach, referred to as k-mer abundance difference (KAD), to compare the inferred copy number of each k-mer indicated by short reads and the observed copy number in the assembly. Simple KAD metrics enable to classify k-mers into categories that reflect the quality of the assembly. Specifically, the KAD method can be used to identify base errors and estimate the overall error rate. In addition, sequence insertion and deletion as well as sequence redundancy can also be detected. Collectively, KAD is valuable for quality evaluation of genome assemblies and, potentially, provides a diagnostic tool to aid in precise error correction. KAD software has been developed to facilitate public uses.


2020 ◽  
Author(s):  
Dandan Lang ◽  
Shilai Zhang ◽  
Pingping Ren ◽  
Fan Liang ◽  
Zongyi Sun ◽  
...  

AbstractThe availability of reference genomes has revolutionized the study of biology. Multiple competing technologies have been developed to improve the quality and robustness of genome assemblies during the last decade. The two widely-used long read sequencing providers – Pacbio (PB) and Oxford Nanopore Technologies (ONT) – have recently updated their platforms: PB enable high throughput HiFi reads with base-level resolution with >99% and ONT generated reads as long as 2 Mb. We applied the two up-to-date platforms to one single rice individual, and then compared the two assemblies to investigate the advantages and limitations of each. The results showed that ONT ultralong reads delivered higher contiguity producing a total of 18 contigs of which 10 were assembled into a single chromosome compared to that of 394 contigs and three chromosome-level contigs for the PB assembly. The ONT ultralong reads also prevented assembly errors caused by long repetitive regions for which we observed a total 44 genes of false redundancies and 10 genes of false losses in the PB assembly leading to over/under-estimations of the gene families in those long repetitive regions. We also noted that the PB HiFi reads generated assemblies with considerably less errors at the level of single nucleotide and small InDels than that of the ONT assembly which generated an average 1.06 errors per Kb assembly and finally engendered 1,475 incorrect gene annotations via altered or truncated protein predictions.


2016 ◽  
Author(s):  
Karyn Meltz Steinberg ◽  
Tina Graves Lindsay ◽  
Valerie A. Schneider ◽  
Mark J.P. Chaisson ◽  
Chad Tomlinson ◽  
...  

ABSTRACTDe novo assembly of human genomes is now a tractable effort due in part to advances in sequencing and mapping technologies. We use PacBio single-molecule, real-time (SMRT) sequencing and BioNano genomic maps to construct the first de novo assembly of NA19240, a Yoruban individual from Africa. This chromosome-scaffolded assembly of 3.08 Gb with a contig N50 of 7.25 Mb and a scaffold N50 of 78.6 Mb represents one of the most contiguous high-quality human genomes. We utilize a BAC library derived from NA19240 DNA and novel haplotype-resolving sequencing technologies and algorithms to characterize regions of complex genomic architecture that are normally lost due to compression to a linear haploid assembly. Our results demonstrate that multiple technologies are still necessary for complete genomic representation, particularly in regions of highly identical segmental duplications. Additionally, we show that diploid assembly has utility in improving the quality of de novo human genome assemblies.


2019 ◽  
Author(s):  
Aaron M. Wenger ◽  
Paul Peluso ◽  
William J. Rowell ◽  
Pi-Chuan Chang ◽  
Richard J. Hall ◽  
...  

AbstractThe major DNA sequencing technologies in use today produce either highly-accurate short reads or noisy long reads. We developed a protocol based on single-molecule, circular consensus sequencing (CCS) to generate highly-accurate (99.8%) long reads averaging 13.5 kb and applied it to sequence the well-characterized human HG002/NA24385. We optimized existing tools to comprehensively detect variants, achieving precision and recall above 99.91% for SNVs, 95.98% for indels, and 95.99% for structural variants. We estimate that 2,434 discordances are correctable mistakes in the high-quality Genome in a Bottle benchmark. Nearly all (99.64%) variants are phased into haplotypes, which further improves variant detection. De novo assembly produces a highly contiguous and accurate genome with contig N50 above 15 Mb and concordance of 99.998%. CCS reads match short reads for small variant detection, while enabling structural variant detection and de novo assembly at similar contiguity and markedly higher concordance than noisy long reads.


Author(s):  
Cheng He ◽  
Guifang Lin ◽  
Hairong Wei ◽  
Haibao Tang ◽  
Frank F White ◽  
...  

ABSTRACTGenome sequences provide genomic maps with a single-base resolution for exploring genetic contents. Sequencing technologies, particularly long reads, have revolutionized genome assemblies for producing highly continuous genome sequences. However, current long-read sequencing technologies generate inaccurate reads that contain many errors. Some errors are retained in assembled sequences, which are typically not completely corrected by using either long reads or more accurate short reads. The issue commonly exists but few tools are dedicated for computing error rates or determining error locations. In this study, we developed a novel approach, referred to as K-mer Abundance Difference (KAD), to compare the inferred copy number of each k-mer indicated by short reads and the observed copy number in the assembly. Simple KAD metrics enable to classify k-mers into categories that reflect the quality of the assembly. Specifically, the KAD method can be used to identify base errors and estimate the overall error rate. In addition, sequence insertion and deletion as well as sequence redundancy can also be detected. Therefore, KAD is valuable for quality evaluation of genome assemblies and, potentially, provides a diagnostic tool to aid in precise error correction. KAD software has been developed to facilitate public uses.


2018 ◽  
Author(s):  
Sarah Goldstein ◽  
Lidia Beka ◽  
Joerg Graf ◽  
Jonathan L. Klassen

AbstractBackgroundShort-read sequencing technologies have made microbial genome sequencing cheap and accessible. However, closing genomes is often costly and assembling short reads from genomes that are repetitive and/or have extreme %GC content remains challenging. Long-read, single-molecule sequencing technologies such as the Oxford Nanopore MinION have the potential to overcome these difficulties, although the best approach for harnessing their potential remains poorly evaluated.ResultsWe sequenced nine bacterial genomes spanning a wide range of GC contents using Illumina MiSeq and Oxford Nanopore MinION sequencing technologies to determine the advantages of each approach, both individually and combined. Assemblies using only MiSeq reads were highly accurate but lacked contiguity, a deficiency that was partially overcome by adding MinION reads to these assemblies. Even more contiguous genome assemblies were generated by using MinION reads for initial assembly, but these were more error-prone and required further polishing. This was especially pronounced when Illumina libraries were biased, as was the case for our strains with both high and low GC content. Increased genome contiguity dramatically improved the annotation of insertion sequences and secondary metabolite biosynthetic gene clusters, likely because long-reads can disambiguate these highly repetitive but biologically important genomic regions.ConclusionsGenome assembly using short-reads is challenged by repetitive sequences and extreme GC contents. Our results indicate that these difficulties can be largely overcome by using single-molecule, long-read sequencing technologies such as the Oxford Nanopore MinION. Using MinION reads for assembly followed by polishing with Illumina reads generated the most contiguous genomes and enabled the accurate annotation of important but difficult to sequence genomic features such as insertion sequences and secondary metabolite biosynthetic gene clusters. The combination of Oxford Nanopore and Illumina sequencing is cost effective and dramatically advances studies of microbial evolution and genome-driven drug discovery.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Bernard Y Kim ◽  
Jeremy Wang ◽  
Danny E Miller ◽  
Olga Barmina ◽  
Emily Kay Delaney ◽  
...  

Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Kelsi A. Lindblad ◽  
Jananan S. Pathmanathan ◽  
Sandrine Moreira ◽  
John R. Bracht ◽  
Robert P. Sebra ◽  
...  

Abstract Background Whole-genome shotgun sequencing, which stitches together millions of short sequencing reads into a single genome, ushered in the era of modern genomics and led to a rapid expansion of the number of genome sequences available. Nevertheless, assembly of short reads remains difficult, resulting in fragmented genome sequences. Ultimately, only a sequencing technology capable of capturing complete chromosomes in a single run could resolve all ambiguities. Even “third generation” sequencing technologies produce reads far shorter than most eukaryotic chromosomes. However, the ciliate Oxytricha trifallax has a somatic genome with thousands of chromosomes averaging only 3.2 kbp, making it an ideal candidate for exploring the benefits of sequencing whole chromosomes without assembly. Results We used single-molecule real-time sequencing to capture thousands of complete chromosomes in single reads and to update the published Oxytricha trifallax JRB310 genome assembly. In this version, over 50% of the completed chromosomes with two telomeres derive from single reads. The improved assembly includes over 12,000 new chromosome isoforms, and demonstrates that somatic chromosomes derive from variable rearrangements between somatic segments encoded up to 191,000 base pairs away. However, while long reads reduce the need for assembly, a hybrid approach that supplements long-read sequencing with short reads for error correction produced the most complete and accurate assembly, overall. Conclusions This assembly provides the first example of complete eukaryotic chromosomes captured by single sequencing reads and demonstrates that traditional approaches to genome assembly can mask considerable structural variation.


Sign in / Sign up

Export Citation Format

Share Document