scholarly journals Experimental and mathematical insights on the interactions between poliovirus and a defective interfering genome

2021 ◽  
Author(s):  
Yuta Shirogane ◽  
Elsa Rousseau ◽  
Jakub Voznica ◽  
Yinghong Xiao ◽  
Weiheng Su ◽  
...  

1AbstractDuring replication, RNA viruses accumulate genome alterations, such as mutations and deletions. The interactions between individual variants can determine the fitness of the virus population and, thus, the outcome of infection. To investigate the effects of defective interfering genomes (DI) on wild-type (WT) poliovirus replication, we developed an ordinary differential equation model. We experimentally determined virus and DI replication during co-infection, and use these data to infer model parameters. Our model predicts, and our experimental measurements confirm, that DI replication and encapsidation are the most important determinants for the outcome of the competition. WT replication inversely correlates with DI replication. Our model predicts that genome replication and effective DI genome encapsidation are critical to effectively inhibit WT production, but an equilibrium can be established which enables WT to replicate, albeit to reduce levels.

2021 ◽  
Vol 17 (9) ◽  
pp. e1009277
Author(s):  
Yuta Shirogane ◽  
Elsa Rousseau ◽  
Jakub Voznica ◽  
Yinghong Xiao ◽  
Weiheng Su ◽  
...  

During replication, RNA viruses accumulate genome alterations, such as mutations and deletions. The interactions between individual variants can determine the fitness of the virus population and, thus, the outcome of infection. To investigate the effects of defective interfering genomes (DI) on wild-type (WT) poliovirus replication, we developed an ordinary differential equation model, which enables exploring the parameter space of the WT and DI competition. We also experimentally examined virus and DI replication kinetics during co-infection, and used these data to infer model parameters. Our model identifies, and our experimental measurements confirm, that the efficiencies of DI genome replication and encapsidation are two most critical parameters determining the outcome of WT replication. However, an equilibrium can be established which enables WT to replicate, albeit to reduced levels.


2019 ◽  
Author(s):  
Yuta Shirogane ◽  
Elsa Rousseau ◽  
Jakub Voznica ◽  
Igor M. Rouzine ◽  
Simone Bianco ◽  
...  

AbstractDuring replication, RNA virus populations accumulate genome alterations, such as mutations and deletions. The interactions between individual variants within the population can determine the fitness of the virus and, thus, the outcome of infection. We developed an ordinary differential equation model to infer the effect of the interaction between defective interfering (DI) replicons and wild-type (WT) poliovirus. We measure production of RNA and viral particles during a single infection cycle, and use these data to infer model parameters. We find that DI replicates faster than WT, but an equilibrium is established when both WT and DI compete for resources needed for RNA replication and genome encapsidation. In the presence of DI, the concentration of WT virions at cell lysis is suppressed by the factor of 5. Multiple generations within a single cell infection provide opportunities for significant inhibition of WT replication by competition with the faster replicating DI genomes.


Author(s):  
Nicole Radde ◽  
Lars Kaderali

Differential equation models provide a detailed, quantitative description of transcription regulatory networks. However, due to the large number of model parameters, they are usually applicable to small networks only, with at most a few dozen genes. Moreover, they are not well suited to deal with noisy data. In this chapter, we show how to circumvent these limitations by integrating an ordinary differential equation model into a stochastic framework. The resulting model is then embedded into a Bayesian learning approach. We integrate the-biologically motivated-expectation of sparse connectivity in the network into the inference process using a specifically defined prior distribution on model parameters. The approach is evaluated on simulated data and a dataset of the transcriptional network governing the yeast cell cycle.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sibaliwe Maku Vyambwera ◽  
Peter Witbooi

We propose a stochastic compartmental model for the population dynamics of tuberculosis. The model is applicable to crowded environments such as for people in high density camps or in prisons. We start off with a known ordinary differential equation model, and we impose stochastic perturbation. We prove the existence and uniqueness of positive solutions of a stochastic model. We introduce an invariant generalizing the basic reproduction number and prove the stability of the disease-free equilibrium when it is below unity or slightly higher than unity and the perturbation is small. Our main theorem implies that the stochastic perturbation enhances stability of the disease-free equilibrium of the underlying deterministic model. Finally, we perform some simulations to illustrate the analytical findings and the utility of the model.


2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Louis-Marie Bloyet ◽  
Benjamin Morin ◽  
Vesna Brusic ◽  
Erica Gardner ◽  
Robin A. Ross ◽  
...  

ABSTRACT Nonsegmented negative-strand (NNS) RNA viruses possess a ribonucleoprotein template in which the genomic RNA is sequestered within a homopolymer of nucleocapsid protein (N). The viral RNA-dependent RNA polymerase (RdRP) resides within an approximately 250-kDa large protein (L), along with unconventional mRNA capping enzymes: a GDP:polyribonucleotidyltransferase (PRNT) and a dual-specificity mRNA cap methylase (MT). To gain access to the N-RNA template and orchestrate the LRdRP, LPRNT, and LMT, an oligomeric phosphoprotein (P) is required. Vesicular stomatitis virus (VSV) P is dimeric with an oligomerization domain (OD) separating two largely disordered regions followed by a globular C-terminal domain that binds the template. P is also responsible for bringing new N protomers onto the nascent RNA during genome replication. We show VSV P lacking the OD (PΔOD) is monomeric but is indistinguishable from wild-type P in supporting mRNA transcription in vitro. Recombinant virus VSV-PΔOD exhibits a pronounced kinetic delay in progeny virus production. Fluorescence recovery after photobleaching demonstrates that PΔOD diffuses 6-fold more rapidly than the wild type within viral replication compartments. A well-characterized defective interfering particle of VSV (DI-T) that is only competent for RNA replication requires significantly higher levels of N to drive RNA replication in the presence of PΔOD. We conclude P oligomerization is not required for mRNA synthesis but enhances genome replication by facilitating RNA encapsidation. IMPORTANCE All NNS RNA viruses, including the human pathogens rabies, measles, respiratory syncytial virus, Nipah, and Ebola, possess an essential L-protein cofactor, required to access the N-RNA template and coordinate the various enzymatic activities of L. The polymerase cofactors share a similar modular organization of a soluble N-binding domain and a template-binding domain separated by a central oligomerization domain. Using a prototype of NNS RNA virus gene expression, vesicular stomatitis virus (VSV), we determined the importance of P oligomerization. We find that oligomerization of VSV P is not required for any step of viral mRNA synthesis but is required for efficient RNA replication. We present evidence that this likely occurs through the stage of loading soluble N onto the nascent RNA strand as it exits the polymerase during RNA replication. Interfering with the oligomerization of P may represent a general strategy to interfere with NNS RNA virus replication.


2014 ◽  
Vol 25 (4) ◽  
pp. 511-529
Author(s):  
H. IBRAHIM ◽  
R. MONNEAU

In this paper, we consider a scalar Peierls--Nabarro model describing the motion of dislocations in the plane (x1,x2) along the linex2=0. Each dislocation can be seen as a phase transition and creates a scalar displacement field in the plane. This displacement field solves a simplified elasto-dynamics equation, which is simply a linear wave equation. The total displacement field creates a stress which makes move the dislocation itself. By symmetry, we can reduce the system to a wave equation in the half planex2>0 coupled with an equation for the dynamics of dislocations on the boundary of the half plane, i.e. onx2=0. Our goal is to understand the dynamics of well-separated dislocations in the limit when the distance between dislocations is very large, of order 1/ɛ. After rescaling, this corresponds to introduce a small parameter ɛ in the system. For the limit ɛ → 0, we are formally able to identify a reduced ordinary differential equation model describing the dynamics of relativistic dislocations if a certain conjecture is assumed to be true.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 663
Author(s):  
Ying Yang ◽  
Daqing Jiang ◽  
Donal O’Regan ◽  
Ahmed Alsaedi

In this paper, we discuss the dynamic behavior of the stochastic Belousov-Zhabotinskii chemical reaction model. First, the existence and uniqueness of the stochastic model’s positive solution is proved. Then we show the stochastic Belousov-Zhabotinskii system has ergodicity and a stationary distribution. Finally, we present some simulations to illustrate our theoretical results. We note that the unique equilibrium of the original ordinary differential equation model is globally asymptotically stable under appropriate conditions of the parameter value f, while the stochastic model is ergodic regardless of the value of f.


Sign in / Sign up

Export Citation Format

Share Document