scholarly journals ORFik: a comprehensive R toolkit for the analysis of translation

2021 ◽  
Author(s):  
Håkon Tjeldnes ◽  
Kornel Labun ◽  
Yamila Torres Cleuren ◽  
Katarzyna Chyżyńska ◽  
Michał Świrski ◽  
...  

ABSTRACT•BackgroundWith the rapid growth in the use of high-throughput methods for characterizing translation and the continued expansion of multi-omics, there is a need for back-end functions and streamlined tools for processing, analyzing, and characterizing data produced by these assays.•ResultsHere, we introduce ORFik, a user-friendly R/Bioconductor toolbox for studying translation and its regulation. It extends GenomicRanges from the genome to the transcriptome and implements a framework that integrates data from several sources. ORFik streamlines the steps to process, analyze, and visualize the different steps of translation with a particular focus on initiation and elongation. It accepts high-throughput sequencing data from ribosome profiling to quantify ribosome elongation or RCP-seq/TCP-seq to also quantify ribosome scanning. In addition, ORFik can use CAGE data to accurately determine 5’UTRs and RNA-seq for determining translation relative to RNA abundance. ORFik supports and calculates over 30 different translation-related features and metrics from the literature and can annotate translated regions such as proteins or upstream open reading frames. As a use-case, we demonstrate using ORFik to rapidly annotate the dynamics of 5’ UTRs across different tissues, detect their uORFs, and characterize their scanning and translation in the downstream protein-coding regions.•Availabilityhttp://bioconductor.org/packages/ORFik

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Håkon Tjeldnes ◽  
Kornel Labun ◽  
Yamila Torres Cleuren ◽  
Katarzyna Chyżyńska ◽  
Michał Świrski ◽  
...  

Abstract Background With the rapid growth in the use of high-throughput methods for characterizing translation and the continued expansion of multi-omics, there is a need for back-end functions and streamlined tools for processing, analyzing, and characterizing data produced by these assays. Results Here, we introduce ORFik, a user-friendly R/Bioconductor API and toolbox for studying translation and its regulation. It extends GenomicRanges from the genome to the transcriptome and implements a framework that integrates data from several sources. ORFik streamlines the steps to process, analyze, and visualize the different steps of translation with a particular focus on initiation and elongation. It accepts high-throughput sequencing data from ribosome profiling to quantify ribosome elongation or RCP-seq/TCP-seq to also quantify ribosome scanning. In addition, ORFik can use CAGE data to accurately determine 5′UTRs and RNA-seq for determining translation relative to RNA abundance. ORFik supports and calculates over 30 different translation-related features and metrics from the literature and can annotate translated regions such as proteins or upstream open reading frames (uORFs). As a use-case, we demonstrate using ORFik to rapidly annotate the dynamics of 5′ UTRs across different tissues, detect their uORFs, and characterize their scanning and translation in the downstream protein-coding regions. Conclusion In summary, ORFik introduces hundreds of tested, documented and optimized methods. ORFik is designed to be easily customizable, enabling users to create complete workflows from raw data to publication-ready figures for several types of sequencing data. Finally, by improving speed and scope of many core Bioconductor functions, ORFik offers enhancement benefiting the entire Bioconductor environment. Availability http://bioconductor.org/packages/ORFik.


2016 ◽  
Author(s):  
Arun Durvasula ◽  
Paul J Hoffman ◽  
Tyler V Kent ◽  
Chaochih Liu ◽  
Thomas J Y Kono ◽  
...  

High throughput sequencing has changed many aspects of population genetics, molecular ecology, and related fields, affecting both experimental design and data analysis. The software package ANGSD allows users to perform a number of population genetic analyses on high-throughput sequencing data. ANGSD uses probabilistic approaches to calculate genome-wide descriptive statistics. The package makes use of genotype likelihood estimates rather than SNP calls and is specifically designed to produce more accurate results for samples with low sequencing depth. ANGSD makes use of full genome data while handling a wide array of sampling and experimental designs. Here we present ANGSD-wrapper, a set of wrapper scripts that provide a user-friendly interface for running ANGSD and visualizing results. ANGSD-wrapper supports multiple types of analyses including esti- mates of nucleotide sequence diversity and performing neutrality tests, principal component analysis, estimation of admixture proportions for individuals samples, and calculation of statistics that quantify recent introgression. ANGSD-wrapper also provides interactive graphing of ANGSD results to enhance data exploration. We demonstrate the usefulness of ANGSD-wrapper by analyzing resequencing data from populations of wild and domesticated Zea. ANGSD-wrapper is freely available from https://github.com/mojaveazure/angsd-wrapper.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e98146 ◽  
Author(s):  
Wei-Chun Chung ◽  
Chien-Chih Chen ◽  
Jan-Ming Ho ◽  
Chung-Yen Lin ◽  
Wen-Lian Hsu ◽  
...  

Author(s):  
Arun Durvasula ◽  
Paul J Hoffman ◽  
Tyler V Kent ◽  
Chaochih Liu ◽  
Thomas J Y Kono ◽  
...  

High throughput sequencing has changed many aspects of population genetics, molecular ecology, and related fields, affecting both experimental design and data analysis. The software package ANGSD allows users to perform a number of population genetic analyses on high-throughput sequencing data. ANGSD uses probabilistic approaches to calculate genome-wide descriptive statistics. The package makes use of genotype likelihood estimates rather than SNP calls and is specifically designed to produce more accurate results for samples with low sequencing depth. ANGSD makes use of full genome data while handling a wide array of sampling and experimental designs. Here we present ANGSD-wrapper, a set of wrapper scripts that provide a user-friendly interface for running ANGSD and visualizing results. ANGSD-wrapper supports multiple types of analyses including esti- mates of nucleotide sequence diversity and performing neutrality tests, principal component analysis, estimation of admixture proportions for individuals samples, and calculation of statistics that quantify recent introgression. ANGSD-wrapper also provides interactive graphing of ANGSD results to enhance data exploration. We demonstrate the usefulness of ANGSD-wrapper by analyzing resequencing data from populations of wild and domesticated Zea. ANGSD-wrapper is freely available from https://github.com/mojaveazure/angsd-wrapper.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrique Blanco ◽  
Mar González-Ramírez ◽  
Luciano Di Croce

AbstractLarge-scale sequencing techniques to chart genomes are entirely consolidated. Stable computational methods to perform primary tasks such as quality control, read mapping, peak calling, and counting are likewise available. However, there is a lack of uniform standards for graphical data mining, which is also of central importance. To fill this gap, we developed SeqCode, an open suite of applications that analyzes sequencing data in an elegant but efficient manner. Our software is a portable resource written in ANSI C that can be expected to work for almost all genomes in any computational configuration. Furthermore, we offer a user-friendly front-end web server that integrates SeqCode functions with other graphical analysis tools. Our analysis and visualization toolkit represents a significant improvement in terms of performance and usability as compare to other existing programs. Thus, SeqCode has the potential to become a key multipurpose instrument for high-throughput professional analysis; further, it provides an extremely useful open educational platform for the world-wide scientific community. SeqCode website is hosted at http://ldicrocelab.crg.eu, and the source code is freely distributed at https://github.com/eblancoga/seqcode.


2015 ◽  
Author(s):  
Arun Durvasula ◽  
Tyler V Kent ◽  
Paul J Hoffman ◽  
Chaochih Liu ◽  
Thomas J Y Kono ◽  
...  

High throughput sequencing has changed many aspects of population genetics, molecular ecology, and related fields, affecting both experimental design and data analysis. The software package ANGSD allows users to perform a number of population genetic analyses on high-throughput sequencing data. The package is specifically designed to produce more accurate results for samples with low sequencing depth, but it handles a wide array of sampling and experimental designs and makes use of full genome data. Here we present ANGSD-wrapper, a user-friendly interface to ANGSD. ANGSD-wrapper includes a number of ’wrapper’ scripts that facilitate configuration and execution of multi-step analyses. ANGSD- wrapper also provides interactive graphing of ANGSD results, thus enhancing data exploration. We demonstrate the usefulness of ANGSD-wrapper by analyzing resequencing data from populations of wild and domesticated Oryza. ANGSD-wrapper is freely available from https://github.com/ arundurvasula/angsd- wrapper.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247215
Author(s):  
Ajeet Singh ◽  
A. T. Vivek ◽  
Shailesh Kumar

Long non-coding RNAs (lncRNAs) are defined as transcripts of greater than 200 nucleotides that play a crucial role in various cellular processes such as the development, differentiation and gene regulation across all eukaryotes, including plant cells. Since the last decade, there has been a significant rise in our understanding of lncRNA molecular functions in plants, resulting in an exponential increase in lncRNA transcripts, while these went unannounced from the major Angiosperm plant species despite the availability of large-scale high throughput sequencing data in public repositories. We, therefore, developed a user-friendly, open-access web interface, AlnC (Angiosperm lncRNA Catalogue) for the exploration of lncRNAs in diverse Angiosperm plant species using recent 1000 plant (1KP) trancriptomes data. The current version of AlnC offers 10,855,598 annotated lncRNA transcripts across 682 Angiosperm plant species encompassing 809 tissues. To improve the user interface, we added features for browsing, searching, and downloading lncRNA data, interactive graphs, and an online BLAST service. Additionally, each lncRNA record is annotated with possible small open reading frames (sORFs) to facilitate the study of peptides encoded within lncRNAs. With this user-friendly interface, we anticipate that AlnC will provide a rich source of lncRNAs for small-and large-scale studies in a variety of flowering plants, as well as aid in the improvement of key characteristics in relevance to their economic importance. Database URL: http://www.nipgr.ac.in/AlnC


Sign in / Sign up

Export Citation Format

Share Document