scholarly journals Microbiota analysis of rural and urban surface waters and sediments in Bangladesh identifies human waste as driver of antibiotic resistance

2021 ◽  
Author(s):  
Ross Stuart McInnes ◽  
Md. Hassan uz-Zaman ◽  
Imam Taskin Alam ◽  
Siu Fung Stanley Ho ◽  
Robert A. Moran ◽  
...  

AbstractIn many low- and middle-income countries antibiotic resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here we characterised the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of Extended-Spectrum Beta-Lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanised settings (n = 7), from rural ponds with a history of aquaculture-related antibiotic use (n = 11) and from rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average 73.8% of assigned reads), while in the water samples Cyanobacteria (on average 60.9% of assigned reads) were the predominant phylum. Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. We identified an IncQ1 sulphonamide resistance plasmid ancestral to the widely studied RSF1010 in one of the urban water samples. The abundance of antibiotic resistance genes was significantly correlated (R2 = 0.73; P = 8.9 × 10−15) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanised settings.ImportanceLow- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic resistant bacteria.

2021 ◽  
Vol 26 ◽  
Author(s):  
Maria Camila Zapata Zúñiga ◽  
Miguel Angel Parra-Pérez ◽  
Johan Alexander Álvarez-Berrio ◽  
Nidia Isabel Molina-Gómez

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.


Sign in / Sign up

Export Citation Format

Share Document