scholarly journals Deletion of Small Ubiquitin-like Modifier-1 Attenuates Behavioral and Anatomical Deficits by Enhancing Functional Autophagic Activities in Huntington Disease

2021 ◽  
Author(s):  
Uri Nimrod Ramírez-Jarquín ◽  
Manish Sharma ◽  
Neelam Shahani ◽  
Srinivasa Subramaniam

ABSTRACTMutant HTT (mHTT) associated with Huntington disease (HD) affects the central nervous system by prominent atrophy in the striatum and promotes psychiatric, cognitive, and choreiform movements, although the exact mechanism remains obscure. Previous studies have shown that SUMO1 (Small Ubiquitin-like Modifier-1) modification of mHTT promotes cellular toxicity, but the in vivo role and functions of SUMO1 in HD pathogenesis are unclear. Here, we report that SUMO1 deletion in Q175DN HD-het knock-in mice (HD mice) prevented age-dependent HD-like motor and neurological impairments and suppressed the striatal atrophy and inflammatory response. SUMO1 deletion caused a drastic reduction in soluble mHtt levels and nuclear and extracellular mHtt inclusions, while increasing cytoplasmic inclusions in the striatum of HD mice. SUMO1 deletion also enhanced autophagic activity, characterized by augmented interactions between mHTT inclusions and a lysosomal marker (LAMP1), increased LC3B/LAMP1 interaction, and decreased sequestosome-1 (p62) and mHTT and diminished p62/LAMP1 interactions in DARPP-32–positive medium spiny neurons (MSNs) in HD mice. Depletion of SUMO1 in an HD cell model also diminished the mHtt levels and enhanced autophagy flux. In addition, the SUMOylation inhibitor ginkgolic acid strongly enhanced autophagy and diminished mHTT levels in human HD fibroblasts. These results indicate that SUMO is a critical therapeutic target in HD and that blocking SUMO may ameliorate HD pathogenesis by improving autophagy activities.

2021 ◽  
Vol 15 ◽  
Author(s):  
Jenya Kolpakova ◽  
Vincent van der Vinne ◽  
Pablo Giménez-Gómez ◽  
Timmy Le ◽  
In-Jee You ◽  
...  

The nucleus accumbens (NAc) is a forebrain region mediating the positive-reinforcing properties of drugs of abuse, including alcohol. It receives glutamatergic projections from multiple forebrain and limbic regions such as the prefrontal cortex (PFCx) and basolateral amygdala (BLA), respectively. However, it is unknown how NAc medium spiny neurons (MSNs) integrate PFCx and BLA inputs, and how this integration is affected by alcohol exposure. Because progress has been hampered by the inability to independently stimulate different pathways, we implemented a dual wavelength optogenetic approach to selectively and independently stimulate PFCx and BLA NAc inputs within the same brain slice. This approach functionally demonstrates that PFCx and BLA inputs synapse onto the same MSNs where they reciprocally inhibit each other pre-synaptically in a strict time-dependent manner. In alcohol-naïve mice, this temporal gating of BLA-inputs by PFCx afferents is stronger than the reverse, revealing that MSNs prioritize high-order executive processes information from the PFCx. Importantly, binge alcohol drinking alters this reciprocal inhibition by unilaterally strengthening BLA inhibition of PFCx inputs. In line with this observation, we demonstrate that in vivo optogenetic stimulation of the BLA, but not PFCx, blocks binge alcohol drinking escalation in mice. Overall, our results identify NAc MSNs as a key integrator of executive and emotional information and show that this integration is dysregulated during binge alcohol drinking.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Javier Alegre-Cortés ◽  
María Sáez ◽  
Roberto Montanari ◽  
Ramon Reig

Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Oscar A Mendez ◽  
Emiliano Flores Machado ◽  
Jing Lu ◽  
Anita Koshy

Toxoplasma gondii is an intracellular parasite that causes a long-term latent infection of neurons. Using a custom MATLAB-based mapping program in combination with a mouse model that allows us to permanently mark neurons injected with parasite proteins, we found that Toxoplasma-injected neurons (TINs) are heterogeneously distributed in the brain, primarily localizing to the cortex followed by the striatum. In addition, we determined that cortical TINs are commonly (>50%) excitatory neurons (FoxP2+) and that striatal TINs are often (>65%) medium spiny neurons (MSNs) (FoxP2+). By performing single neuron patch-clamping on striatal TINs and neighboring uninfected MSNs, we discovered that TINs have highly aberrant electrophysiology. As approximately 90% of TINs will die by 8 weeks post-infection, this abnormal physiology suggests that injection with Toxoplasma protein— either directly or indirectly— affects neuronal health and survival. Collectively, these data offer the first insights into which neurons interact with Toxoplasma and how these interactions alter neuron physiology in vivo.


Author(s):  
Jeffrey Parrilla-Carrero ◽  
Anna Kruyer ◽  
Reda M. Chalhoub ◽  
Courtney Powell ◽  
Shanna Resendez ◽  
...  

Abstract D2 receptor blockade has been cited as a principal mechanism of action of all antipsychotic medications, but is poorly predictive of symptom improvement or neurophysiological responses recorded using human brain imaging. A potential hurdle in interpreting such human imaging studies arises from the inability to distinguish activity within neuronal subcircuits. We used single cell resolution imaging to record activity in distinct populations of medium spiny neurons in vivo within the mouse ventral striatum, a structure associated with schizophrenia symptoms and antipsychotic therapeutic efficacy. While we expected the antipsychotic haloperidol to excite D2 receptor expressing neurons, we report a strong cellular depression mediated by the hypofunctional NMDA channel, which may be mediated in part by the action of haloperidol on the sigma1 receptor. Altogether, the impact of haloperidol on Ca2+ events in D2 receptor expressing neurons predicted psychomotor inhibition. Our results elucidate mechanisms by which antipsychotics act rapidly in the brain to impact psychomotor outputs.


2004 ◽  
Vol 91 (3) ◽  
pp. 1337-1349 ◽  
Author(s):  
Weixing Shen ◽  
Salvador Hernandez-Lopez ◽  
Tatiana Tkatch ◽  
Joshua E. Held ◽  
D. James Surmeier

A slowly inactivating, low-threshold K+ current has been implicated in the regulation of state transitions and repetitive activity in striatal medium spiny neurons. However, the molecular identity of the channels underlying this current and their biophysical properties remain to be clearly determined. Because previous work had suggested this current arose from Kv1 family channels, high-affinity toxins for this family were tested for their ability to block whole cell K+ currents activated by depolarization of acutely isolated neurons. α-Dendrotoxin, which blocks channels containing Kv1.1, Kv1.2, or Kv1.6 subunits, decreased currents evoked by depolarization. Three other Kv1 family toxins that lack a high affinity for Kv1.2 subunits, r-agitoxin-2, dendrotoxin-K, and r-margatoxin, failed to significantly reduce currents, implicating channels with Kv1.2 subunits. RT-PCR results confirmed the expression of Kv1.2 mRNA in identified medium spiny neurons. Currents attributable to Kv1.2 channels activated rapidly, inactivated slowly, and recovered from inactivation slowly. In the subthreshold range (ca. -60 mV), these currents accounted for as much as 50% of the depolarization-activated K+ current. Moreover, their rapid activation and relatively slow deactivation suggested that they contribute to spike afterpotentials regulating repetitive discharge. This inference was confirmed in current-clamp recordings from medium spiny neurons in the slice preparation where Kv1.2 blockade reduced first-spike latency and increased discharge frequency evoked from hyperpolarized membrane potentials resembling the “down-state” found in vivo. These studies establish a clear functional role for somato-dendritic Kv1.2 channels in the regulation of state transitions and repetitive discharge in striatal medium spiny neurons.


2019 ◽  
Author(s):  
Carolyn G. Sweeney ◽  
Patrick J. Kearney ◽  
Rita R. Fagan ◽  
Lindsey A. Smith ◽  
Nicholas C. Bolden ◽  
...  

AbstractDopamine (DA) signaling is critical for movement, motivation, and addictive behavior. The neuronal GTPase, Rit2, is enriched in DA neurons (DANs), binds directly to the DA transporter (DAT), and is implicated in several DA-related neuropsychiatric disorders. However, it remains unknown whether Rit2 plays a role in either DAergic signaling and/or DA-dependent behaviors. Here, we leveraged the TET-OFF system to conditionally silence Rit2 in Pitx3IRES2-tTA mouse DANs. Following DAergic Rit2 knockdown (Rit2-KD), mice displayed an anxiolytic phenotype, with no change in baseline locomotion. Further, males exhibited increased acute cocaine sensitivity, whereas DAergic Rit2-KD suppressed acute cocaine sensitivity in females. DAergic Rit2-KD did not affect presynaptic TH and DAT protein levels in females, nor was TH was affected in males; however, DAT was significantly diminished in males. Paradoxically, despite decreased DAT levels in males, striatal DA uptake was enhanced, but was not due to enhanced DAT surface expression in either dorsal or ventral striatum. Finally, patch recordings in nucleus accumbens (NAcc) medium spiny neurons (MSNs) revealed reciprocal changes in spontaneous EPSP (sEPSP) frequency in male and female D1+ and D2+ MSNs following DAergic Rit2-KD. In males, sEPSP frequency was decreased in D1+, but not D2+, MSNs, whereas in females sEPSP frequency decreased in D2+, but not D1+, MSNs. Moreover, DAergic Rit2-KD abolished the ability of cocaine to reduce sEPSP frequency in D1+, but not D2+, male MSNs. Taken together, our studies are among the first to acheive AAV-mediated, conditional and inducible DAergic knockdown in vivo. Importantly, our results provide the first evidence that DAergic Rit2 expression differentially impacts striatal function and DA-dependent behaviors in males and females.


Sign in / Sign up

Export Citation Format

Share Document