scholarly journals NeuroModulation Modeling (NMM): Inferring the form of neuromodulation from fMRI tuning functions

2021 ◽  
Author(s):  
Patrick Sadil ◽  
David E. Huber ◽  
Rosemary A. Cowell

AbstractMany cognitive neuroscience theories assume that changes in behavior arise from changes in the tuning properties of neurons (e.g., Dosher & Lu 1998, Ling, Liu, & Carrasco 2009). However, direct tests of these theories with electrophysiology are rarely feasible with humans. Non-invasive functional magnetic resonance imaging (fMRI) produces voxel tuning, but each voxel aggregates hundreds of thousands of neurons, and voxel tuning modulation is a complex mixture of the underlying neural responses. We developed a pair of statistical tools to address this problem, which we refer to as NeuroModulation Modeling (NMM). NMM advances fMRI analysis methods, inferring the response of neural subpopulations by leveraging modulations at the voxel-level to differentiate between different forms of neuromodulation. One tool uses hierarchical Bayesian modeling and model comparison while the other tool uses a non-parametric slope analysis. We tested the validity of NMM by applying it to fMRI data collected from participants viewing orientation stimuli at high- and low-contrast, which is known from electrophysiology to cause multiplicative scaling of neural tuning (e.g., Sclar & Freeman 1982). In seeming contradiction to ground truth, increasing contrast appeared to cause an additive shift in orientation tuning of voxel-level fMRI data. However, NMM indicated multiplicative gain rather than an additive shift, in line with single-cell electrophysiology. Beyond orientation, this approach could be applied to determine the form of neuromodulation in any fMRI experiment, provided that the experiment tests multiple points along a stimulus dimension to which neurons are tuned (e.g., direction of motion, isoluminant hue, pitch, etc.).Significance StatementThe spatial resolution afforded by noninvasive neuroimaging in humans continues to improve, but the best available resolution is insufficient for testing theories in cognitive neuroscience; many theories are specified at the level of individual neurons, but magnetic resonance imaging aggregates over hundreds of thousands of neurons. With limited resolution, it is unclear how to test assumptions and predictions of these theories in humans. To bridge this gap, we developed a modeling framework that allows researchers to infer a key property of the neural code -- how stimulus features and cognitive states modulate neural tuning – given only noninvasive neuroimaging data. The framework is broadly applicable to constrain and test theories that link changes in behavior to changes in neural tuning.

2021 ◽  
Vol 11 (13) ◽  
pp. 6216
Author(s):  
Aikaterini S. Karampasi ◽  
Antonis D. Savva ◽  
Vasileios Ch. Korfiatis ◽  
Ioannis Kakkos ◽  
George K. Matsopoulos

Effective detection of autism spectrum disorder (ASD) is a complicated procedure, due to the hundreds of parameters suggested to be implicated in its etiology. As such, machine learning methods have been consistently applied to facilitate diagnosis, although the scarcity of potent autism-related biomarkers is a bottleneck. More importantly, the variability of the imported attributes among different sites (e.g., acquisition parameters) and different individuals (e.g., demographics, movement, etc.) pose additional challenges, eluding adequate generalization and universal modeling. The present study focuses on a data-driven approach for the identification of efficacious biomarkers for the classification between typically developed (TD) and ASD individuals utilizing functional magnetic resonance imaging (fMRI) data on the default mode network (DMN) and non-physiological parameters. From the fMRI data, static and dynamic connectivity were calculated and fed to a feature selection and classification framework along with the demographic, acquisition and motion information to obtain the most prominent features in regard to autism discrimination. The acquired results provided high classification accuracy of 76.63%, while revealing static and dynamic connectivity as the most prominent indicators. Subsequent analysis illustrated the bilateral parahippocampal gyrus, right precuneus, midline frontal, and paracingulate as the most significant brain regions, in addition to an overall connectivity increment.


2020 ◽  
Vol 21 (S21) ◽  
Author(s):  
Jin Li ◽  
◽  
Chenyuan Bian ◽  
Dandan Chen ◽  
Xianglian Meng ◽  
...  

Abstract Background Although genetic risk factors and network-level neuroimaging abnormalities have shown effects on cognitive performance and brain atrophy in Alzheimer’s disease (AD), little is understood about how apolipoprotein E (APOE) ε4 allele, the best-known genetic risk for AD, affect brain connectivity before the onset of symptomatic AD. This study aims to investigate APOE ε4 effects on brain connectivity from the perspective of multimodal connectome. Results Here, we propose a novel multimodal brain network modeling framework and a network quantification method based on persistent homology for identifying APOE ε4-related network differences. Specifically, we employ sparse representation to integrate multimodal brain network information derived from both the resting state functional magnetic resonance imaging (rs-fMRI) data and the diffusion-weighted magnetic resonance imaging (dw-MRI) data. Moreover, persistent homology is proposed to avoid the ad hoc selection of a specific regularization parameter and to capture valuable brain connectivity patterns from the topological perspective. The experimental results demonstrate that our method outperforms the competing methods, and reasonably yields connectomic patterns specific to APOE ε4 carriers and non-carriers. Conclusions We have proposed a multimodal framework that integrates structural and functional connectivity information for constructing a fused brain network with greater discriminative power. Using persistent homology to extract topological features from the fused brain network, our method can effectively identify APOE ε4-related brain connectomic biomarkers.


Author(s):  
Nicole A. Lazar

The analysis of functional magnetic resonance imaging (fMRI) data poses many statistical challenges. The data are massive, noisy, and have a complicated spatial and temporal correlation structure. This chapter introduces the basics of fMRI data collection and surveys common approaches for data analysis.


2002 ◽  
Vol 25 (6) ◽  
pp. 771-771 ◽  
Author(s):  
Elise Temple

Functional magnetic resonance imaging studies of developmental disorders and normal cognition that include children are becoming increasingly common and represent part of a newly expanding field of developmental cognitive neuroscience. These studies have illustrated the importance of the process of development in understanding brain mechanisms underlying cognition and including children in the study of the etiology of developmental disorders.


Neurosurgery ◽  
2003 ◽  
Vol 52 (6) ◽  
pp. 1335-1347 ◽  
Author(s):  
Franck-Emmanuel Roux ◽  
Kader Boulanouar ◽  
Jean-Albert Lotterie ◽  
Mehdi Mejdoubi ◽  
James P. LeSage ◽  
...  

Abstract OBJECTIVE The aim of this study was to analyze the usefulness of preoperative language functional magnetic resonance imaging (fMRI), by correlating fMRI data with intraoperative cortical stimulation results for patients with brain tumors. METHODS Naming and verb generation tasks were used, separately or in combination, for 14 right-handed patients with tumors in the left hemisphere. fMRI data obtained were analyzed with SPM software, with two standard analysis thresholds (P < 0.005 and then P < 0.05). The fMRI data were then registered in a frameless stereotactic neuronavigational device and correlated with direct brain mapping results. We used a statistical model with the fMRI information as a predictor, spatially correlating each intraoperatively mapped cortical site with fMRI data integrated in the neuronavigational system (site-by-site correlation). Eight patients were also studied with language fMRI postoperatively, with the same acquisition protocol. RESULTS We observed high variability in signal extents and locations among patients with both tasks. The activated areas were located mainly in the left hemisphere in the middle and inferior frontal gyri (F2 and F3), the superior and middle temporal gyri (T1 and T2), and the supramarginal and angular gyri. A total of 426 cortical sites were tested for each task among the 14 patients. In frontal and temporoparietal areas, poor sensitivity of the fMRI technique was observed for the naming and verb generation tasks (22 and 36%, respectively) with P < 0.005 as the analysis threshold. Although not perfect, the specificity of the fMRI technique was good in all conditions (97% for the naming task and 98% for the verb generation task). Better correlation (sensitivity, 59%; specificity, 97%) was achieved by combining the two fMRI tasks. Variation of the analysis threshold to P < 0.05 increased the sensitivity to 66% while decreasing the specificity to 91%. Postoperative fMRI data (for the cortical brain areas studied intraoperatively) were in accordance with brain mapping results for six of eight patients. Complete agreement between pre- and postoperative fMRI studies and direct brain mapping results was observed for only three of eight patients. CONCLUSION With the paradigms and analysis thresholds used in this study, language fMRI data obtained with naming or verb generation tasks, before and after surgery, were imperfectly correlated with intraoperative brain mapping results. A better correlation could be obtained by combining the fMRI tasks. The overall results of this study demonstrated that language fMRI could not be used to make critical surgical decisions in the absence of direct brain mapping. Other acquisition protocols are required for evaluation of the potential role of language fMRI in the accurate detection of essential cortical language areas.


2009 ◽  
Vol 18 (4) ◽  
pp. 210-216 ◽  
Author(s):  
John Kounios ◽  
Mark Beeman

A sudden comprehension that solves a problem, reinterprets a situation, explains a joke, or resolves an ambiguous percept is called an insight (i.e., the “Aha! moment”). Psychologists have studied insight using behavioral methods for nearly a century. Recently, the tools of cognitive neuroscience have been applied to this phenomenon. A series of studies have used electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to study the neural correlates of the “Aha! moment” and its antecedents. Although the experience of insight is sudden and can seem disconnected from the immediately preceding thought, these studies show that insight is the culmination of a series of brain states and processes operating at different time scales. Elucidation of these precursors suggests interventional opportunities for the facilitation of insight.


2020 ◽  
Author(s):  
Samuel J. Harrison ◽  
Samuel Bianchi ◽  
Jakob Heinzle ◽  
Klaas Enno Stephan ◽  
Sandra Iglesias ◽  
...  

In this technical note, we introduce a new method for estimating changes in respiratory volume per unit time (RVT) from respiratory bellows recordings. By using techniques from the electrophysiological literature, in particular the Hilbert transform, we show how we can better characterise breathing rhythms, with the goal of improving physiological noise correction in functional magnetic resonance imaging (fMRI). Specifically, our approach leads to a representation with higher time resolution and better captures atypical breathing events than current peak-based RVT estimators. Finally, we demonstrate that this leads to an increase in the amount of respiration-related variance removed from fMRI data when used as part of a typical preprocessing pipeline. Our implementation will be publicly available as part of the PhysIO package, which is distributed as part of the open-source TAPAS toolbox (https://translationalneuromodeling.org/tapas).


2019 ◽  
Author(s):  
Ru-Yuan Zhang ◽  
Xue-Xin Wei ◽  
Kendrick Kay

ABSTRACTPrevious studies have shown that neurons exhibit trial-by-trial correlated activity and that such noise correlations (NCs) greatly impact the accuracy of population codes. Meanwhile, multivariate pattern analysis (MVPA) has become a mainstream approach in functional magnetic resonance imaging (fMRI), but it remains unclear how NCs between voxels influence MVPA performance. Here, we tackle this issue by combining voxel-encoding modeling and MVPA. We focus on a well-established form of NC, tuning-compatible noise correlation (TCNC), whose sign and magnitude are systematically related to the tuning similarity between two units. We first replicate the classical finding that TCNCs impair population codes in a standard neuronal population. We then extend our analysis to fMRI data, and show that voxelwise TCNCs do not impair and can even improve MVPA performance when TCNCs are strong or the number of voxels is large. We also confirm these results using standard information-theoretic analyses in computational neuroscience. Further computational analyses demonstrate that the discrepancy between the effect of TCNCs in neuronal and voxel populations can be explained by tuning heterogeneity and pool sizes. Our results provide a theoretical foundation to understand the effect of correlated activity on population codes in macroscopic fMRI data. Our results also suggest that future fMRI research could benefit from a closer examination of the correlational structure of multivariate responses, which is not directly revealed by conventional MVPA approaches.


2019 ◽  
Author(s):  
Hamid B. Turker ◽  
Elizabeth Riley ◽  
Wen-Ming Luh ◽  
Stan J. Colcombe ◽  
Khena M. Swallow

AbstractThe locus coeruleus (LC) plays a central role in regulating human cognition, arousal, and autonomic states. Efforts to characterize the LC’s function in humans using functional magnetic resonance imaging have been hampered by its small size and location near a large source of noise, the fourth ventricle. We tested whether the ability to characterize LC function is improved by employing neuromelanin-T1 weighted images (nmT1) for LC localization and multi-echo functional magnetic resonance imaging (ME-fMRI) for estimating intrinsic functional connectivity (iFC). Analyses indicated that, relative to a probabilistic atlas, utilizing nmT1 images to individually localize the LC increases the specificity of seed time series and clusters in the iFC maps. When combined with independent components analysis (ME-ICA), ME-fMRI data provided significant gains in the temporal signal to noise ratio relative to denoised single-echo (1E) data. The effects of acquiring nmT1 images and ME-fMRI data did not appear to only reflect increases in power: iFC maps for each approach only moderately overlapped. This is consistent with findings that ME-fMRI offers substantial advantages over 1E data acquisition and denoising. It also suggests that individually identifying LC with nmT1 scans is likely to reduce the influence of other nearby brainstem regions on estimates of LC function.HighlightsManual tracing of locus coeruleus increased specificity of seed time seriesManual tracing of locus coeruleus increased specificity of intrinsic connectivityMulti-echo fMRI increased temporal signal-to-noise ratio compared to single-echo fMRIConnectivity maps across methodologies overlapped only moderatelyMeasurement of LC function benefits from multi-echo fMRI and tracing ROIs


Sign in / Sign up

Export Citation Format

Share Document