scholarly journals Single-stranded nucleic acid sensing and coacervation by linker histone H1

2021 ◽  
Author(s):  
Rachel Leicher ◽  
Adewola Osunsade ◽  
Andrew Latham ◽  
Gabriella N.L. Chua ◽  
John W. Watters ◽  
...  

The linker histone H1 is the most abundant group of eukaryotic chromatin-binding proteins. The mechanism underlying the diverse physiological functions of H1 remains unclear. Here we used single-molecule fluorescence and force microscopy to observe the behavior of H1 on DNA under different tensions. Unexpectedly, we found that H1 coalesces around nascent ssDNA. Molecular dynamics simulations revealed that multivalent and transient interactions between H1 and ssDNA mediate their phase separation. We further showed that longer and unpaired nucleic acids result in more viscous, gel-like H1 droplets. Finally, we imaged H1 puncta in cells under normal and stressed conditions and observed that RPA and H1 occupy separate nuclear regions. Overall, our results provide a new perspective to understanding the role of H1 in genome organization and maintenance.

2012 ◽  
Vol 27 ◽  
pp. 393-398 ◽  
Author(s):  
Alexander Polyanichko ◽  
Elena Chikhirzhina

The structural organization of the DNA complexes with nonhistone chromosomal protein and linker histone H1 was studied using circular dichroism spectroscopy (CD) and atomic force microscopy (AFM). It has been shown that due to the interaction between HMGB1 and H1 highly ordered DNA-protein complexes emerge in the solution. Their spectral properties are found to be similar to those of DNA/HMGB1-(AB) complexes, reported earlier. AFM images reveal the formation of fibril-like structures in the solution. We suggest that the electrostatic screening of the HMGB1 C-terminal domain by histone H1 facilitates stronger interaction of the HMGB1/H1 with DNA and the formation of the ordered supramolecular DNA-protein complexes.


2003 ◽  
Vol 85 (6) ◽  
pp. 4012-4022 ◽  
Author(s):  
Jochen Felix Kepert ◽  
Katalin Fejes Tóth ◽  
Maïwen Caudron ◽  
Norbert Mücke ◽  
Jörg Langowski ◽  
...  

2020 ◽  
Author(s):  
Hao Wu ◽  
Yamini Dalal ◽  
Garegin A. Papoian

AbstractLinker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model AWSEM-DNA to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near atomic resolution the way the disordered linker histone H1 modulates nucleosome’s structural preferences and conformational dynamics.


Biochemistry ◽  
2016 ◽  
Vol 55 (14) ◽  
pp. 2069-2077 ◽  
Author(s):  
Hongjun Yue ◽  
He Fang ◽  
Sijie Wei ◽  
Jeffrey J. Hayes ◽  
Tae-Hee Lee

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eva Höllmüller ◽  
Simon Geigges ◽  
Marie L. Niedermeier ◽  
Kai-Michael Kammer ◽  
Simon M. Kienle ◽  
...  

AbstractDecoding the role of histone posttranslational modifications (PTMs) is key to understand the fundamental process of epigenetic regulation. This is well studied for PTMs of core histones but not for linker histone H1 in general and its ubiquitylation in particular due to a lack of proper tools. Here, we report on the chemical synthesis of site-specifically mono-ubiquitylated H1.2 and identify its ubiquitin-dependent interactome on a proteome-wide scale. We show that site-specific ubiquitylation of H1 at position K64 modulates interactions with deubiquitylating enzymes and the deacetylase SIRT1. Moreover, it affects H1-dependent chromatosome assembly and phase separation resulting in a more open chromatosome conformation generally associated with a transcriptionally active chromatin state. In summary, we propose that site-specific ubiquitylation plays a general regulatory role for linker histone H1.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Bourguet ◽  
Colette L. Picard ◽  
Ramesh Yelagandula ◽  
Thierry Pélissier ◽  
Zdravko J. Lorković ◽  
...  

AbstractIn flowering plants, heterochromatin is demarcated by the histone variant H2A.W, elevated levels of the linker histone H1, and specific epigenetic modifications, such as high levels of DNA methylation at both CG and non-CG sites. How H2A.W regulates heterochromatin organization and interacts with other heterochromatic features is unclear. Here, we create a h2a.w null mutant via CRISPR-Cas9, h2a.w-2, to analyze the in vivo function of H2A.W. We find that H2A.W antagonizes deposition of H1 at heterochromatin and that non-CG methylation and accessibility are moderately decreased in h2a.w-2 heterochromatin. Compared to H1 loss alone, combined loss of H1 and H2A.W greatly increases accessibility and facilitates non-CG DNA methylation in heterochromatin, suggesting co-regulation of heterochromatic features by H2A.W and H1. Our results suggest that H2A.W helps maintain optimal heterochromatin accessibility and DNA methylation by promoting chromatin compaction together with H1, while also inhibiting excessive H1 incorporation.


2020 ◽  
Vol 21 (19) ◽  
pp. 7330
Author(s):  
Roberta Noberini ◽  
Cristina Morales Torres ◽  
Evelyn Oliva Savoia ◽  
Stefania Brandini ◽  
Maria Giovanna Jodice ◽  
...  

Epigenetic aberrations have been recognized as important contributors to cancer onset and development, and increasing evidence suggests that linker histone H1 variants may serve as biomarkers useful for patient stratification, as well as play an important role as drivers in cancer. Although traditionally histone H1 levels have been studied using antibody-based methods and RNA expression, these approaches suffer from limitations. Mass spectrometry (MS)-based proteomics represents the ideal tool to accurately quantify relative changes in protein abundance within complex samples. In this study, we used a label-free quantification approach to simultaneously analyze all somatic histone H1 variants in clinical samples and verified its applicability to laser micro-dissected tissue areas containing as low as 1000 cells. We then applied it to breast cancer patient samples, identifying differences in linker histone variants patters in primary triple-negative breast tumors with and without relapse after chemotherapy. This study highlights how label-free quantitation by MS is a valuable option to accurately quantitate histone H1 levels in different types of clinical samples, including very low-abundance patient tissues.


2007 ◽  
Vol 53 (4) ◽  
pp. 199-205 ◽  
Author(s):  
Piotr Jedrzejczak ◽  
Bartosz Kempisty ◽  
Artur Bryja ◽  
M. Mostowska ◽  
Magdalena Depa-Martynow ◽  
...  

2002 ◽  
Vol 158 (7) ◽  
pp. 1161-1170 ◽  
Author(s):  
Yali Dou ◽  
Josephine Bowen ◽  
Yifan Liu ◽  
Martin A. Gorovsky

In Tetrahymena cells, phosphorylation of linker histone H1 regulates transcription of specific genes. Phosphorylation acts by creating a localized negative charge patch and phenocopies the loss of H1 from chromatin, suggesting that it affects transcription by regulating the dissociation of H1 from chromatin. To test this hypothesis, we used FRAP of GFP-tagged H1 to analyze the effects of mutations that either eliminate or mimic phosphorylation on the binding of H1 to chromatin both in vivo and in vitro. We demonstrate that phosphorylation can increase the rate of dissociation of H1 from chromatin, providing a mechanism by which it can affect H1 function in vivo. We also demonstrate a previously undescribed ATP-dependent process that has a global effect on the dynamic binding of linker histone to chromatin.


Sign in / Sign up

Export Citation Format

Share Document