scholarly journals Asymmetric structures and conformational plasticity of the uncleaved full-length human immunodeficiency virus (HIV-1) envelope glycoprotein trimer

2021 ◽  
Author(s):  
Shijian Zhang ◽  
Kunyu Wang ◽  
Wang Wei Li ◽  
Hanh T Nguyen ◽  
Shuobing Chen ◽  
...  

The functional human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer [(gp120/gp41)3] is produced by cleavage of a conformationally flexible gp160 precursor. Gp160 cleavage or the binding of BMS-806, an entry inhibitor, stabilizes the pre-triggered, 'closed' (State-1) conformation recognized by rarely elicited broadly neutralizing antibodies. Poorly neutralizing antibodies (pNAbs) elicited at high titers during natural infection recognize more 'open' Env conformations (States 2 and 3) induced by binding the receptor, CD4. We found that BMS-806 treatment and crosslinking decreased the exposure of pNAb epitopes on cell-surface gp160; however, after detergent solubilization, crosslinked and BMS-806-treated gp160 sampled non-State-1 conformations that could be recognized by pNAbs. Cryo-electron microscopy of the purified BMS-806-bound gp160 revealed two hitherto unknown asymmetric trimer conformations, providing insights into the allosteric coupling between trimer opening and structural variation in the gp41 HR1N region. The individual protomer structures in the asymmetric gp160 trimers resemble those of other genetically modified or antibody-bound cleaved HIV-1 Env trimers, which have been suggested to assume State-2-like conformations. Asymmetry of the uncleaved Env potentially exposes surfaces of the trimer to pNAbs. To evaluate the effect of stabilizing a State-1-like conformation of the membrane Env precursor, we treated cells expressing wild-type HIV-1 Env with BMS-806. BMS-806 treatment decreased both gp160 cleavage and the addition of complex glycans, implying that gp160 conformational flexibility contributes to the efficiency of these processes. Selective pressure to maintain flexibility in the precursor of functional Env allows the uncleaved Env to sample asymmetric conformations that potentially skew host antibody responses toward pNAbs.

2021 ◽  
Author(s):  
Shijian Zhang ◽  
Kunyu Wang ◽  
Wei Li Wang ◽  
Hanh T. Nguyen ◽  
Shuobing Chen ◽  
...  

The functional human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer [(gp120/gp41) 3 ] is produced by cleavage of a conformationally flexible gp160 precursor. Gp160 cleavage or the binding of BMS-806, an entry inhibitor, stabilizes the pre-triggered, “closed” (State-1) conformation recognized by rarely elicited broadly neutralizing antibodies. Poorly neutralizing antibodies (pNAbs) elicited at high titers during natural infection recognize more “open” Env conformations (States 2 and 3) induced by binding the receptor, CD4. We found that BMS-806 treatment and crosslinking decreased the exposure of pNAb epitopes on cell-surface gp160; however, after detergent solubilization, crosslinked and BMS-806-treated gp160 sampled non-State-1 conformations that could be recognized by pNAbs. Cryo-electron microscopy of the purified BMS-806-bound gp160 revealed two hitherto unknown asymmetric trimer conformations, providing insights into the allosteric coupling between trimer opening and structural variation in the gp41 HR1 N region. The individual protomer structures in the asymmetric gp160 trimers resemble those of other genetically modified or antibody-bound cleaved HIV-1 Env trimers, which have been suggested to assume State-2-like conformations. Asymmetry of the uncleaved Env potentially exposes surfaces of the trimer to pNAbs. To evaluate the effect of stabilizing a State-1-like conformation of the membrane Env precursor, we treated cells expressing wild-type HIV-1 Env with BMS-806. BMS-806 treatment decreased both gp160 cleavage and the addition of complex glycans, implying that gp160 conformational flexibility contributes to the efficiency of these processes. Selective pressure to maintain flexibility in the precursor of functional Env allows the uncleaved Env to sample asymmetric conformations that potentially skew host antibody responses toward pNAbs. IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The functional Env trimer is produced by cleavage of the gp160 precursor in the infected cell. We found that the HIV-1 Env precursor is highly plastic, allowing it to assume different asymmetric shapes. This conformational plasticity is potentially important for Env cleavage and proper modification by sugars. Having a flexible, asymmetric Env precursor that can misdirect host antibody responses without compromising virus infectivity would be an advantage to a persistent virus like HIV-1.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Shitao Zou ◽  
Shijian Zhang ◽  
Althea Gaffney ◽  
Haitao Ding ◽  
Maolin Lu ◽  
...  

ABSTRACT During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system. IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine.


2002 ◽  
Vol 76 (9) ◽  
pp. 4634-4642 ◽  
Author(s):  
Xinzhen Yang ◽  
Juliette Lee ◽  
Erin M. Mahony ◽  
Peter D. Kwong ◽  
Richard Wyatt ◽  
...  

ABSTRACT The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane proteins. Soluble gp140 glycoproteins composed of the uncleaved ectodomains of gp120 and gp41 form unstable, heterogeneous oligomers, but soluble gp140 trimers can be stabilized by fusion with a C-terminal, trimeric GCN4 motif (X. Yang et al., J. Virol. 74:5716-5725, 2000). To understand the influence of the C-terminal trimerization domain on the properties of soluble HIV-1 envelope glycoprotein trimers, uncleaved, soluble gp140 glycoproteins were stabilized by fusion with another trimeric motif derived from T4 bacteriophage fibritin. The fibritin construct was more stable to heat and reducing conditions than the GCN4 construct. Both GCN4- and fibritin-stabilized soluble gp140 glycoproteins exhibited patterns of neutralizing and nonneutralizing antibody binding expected for the functional envelope glycoprotein spike. Of note, two potently neutralizing antibodies, immunoglobulin G1b12 and 2G12, exhibited the greatest recognition of the stabilized, soluble trimers, relative to recognition of the gp120 monomer. The observed similarities between the GCN4 and fibritin constructs indicate that the HIV-1 envelope glycoprotein ectodomains dictate many of the antigenic and structural features of these fusion proteins. The melting temperatures and ligand recognition properties of the GCN4- and fibritin-stabilized soluble gp140 glycoproteins suggest that these molecules assume conformations distinct from that of the fusion-active, six-helix bundle.


2008 ◽  
Vol 82 (24) ◽  
pp. 12094-12103 ◽  
Author(s):  
Catherine A. Blish ◽  
Ozge C. Dogan ◽  
Nina R. Derby ◽  
Minh-An Nguyen ◽  
Bhavna Chohan ◽  
...  

ABSTRACT Superinfection by a second human immunodeficiency virus type 1 (HIV-1) strain indicates that gaps in protective immunity occur during natural infection. To define the role of HIV-1-specific neutralizing antibodies (NAbs) in this setting, we examined NAb responses in 6 women who became superinfected between ∼1 to 5 years following initial infection compared to 18 women with similar risk factors who did not. Although superinfected individuals had less NAb breadth than matched controls at ∼1 year postinfection, no significant differences in the breadth or potency of NAb responses were observed just prior to the second infection. In fact, four of the six subjects had relatively broad and potent NAb responses prior to infection by the second strain. To more specifically examine the specificity of the NAbs against the superinfecting virus, these variants were cloned from five of the six individuals. The superinfecting variants did not appear to be inherently neutralization resistant, as measured against a pool of plasma from unrelated HIV-infected individuals. Moreover, the superinfected individuals were able to mount autologous NAb responses to these variants following reinfection. In addition, most superinfected individuals had NAbs that could neutralize their second viral strains prior to their reinfection, suggesting that the level of NAbs elicited during natural infection was not sufficient to block infection. These data indicate that preventing infection by vaccination will likely require broader and more potent NAb responses than those found in HIV-1-infected individuals.


2001 ◽  
Vol 75 (3) ◽  
pp. 1165-1171 ◽  
Author(s):  
Xinzhen Yang ◽  
Richard Wyatt ◽  
Joseph Sodroski

ABSTRACT Human immunodeficiency virus (HIV-1) envelope glycoprotein subunits, such as the gp120 exterior glycoprotein, typically elicit antibodies that neutralize T-cell-line-adapted (TCLA), but not primary, clinical isolates of HIV-1. Here we compare the immunogenicity of gp120 and soluble stabilized trimers, which were designed to resemble the functional envelope glycoprotein oligomers of primary and TCLA HIV-1 strains. For both primary and TCLA virus proteins, soluble stabilized trimers generated neutralizing antibody responses more efficiently than gp120 did. Trimers derived from a primary isolate elicited antibodies that neutralized primary and TCLA HIV-1 strains. By contrast, trimers derived from a TCLA isolate generated antibodies that neutralized only the homologous TCLA virus. Thus, soluble stabilized envelope glycoprotein trimers derived from primary HIV-1 isolates represent defined immunogens capable of eliciting neutralizing antibodies that are active against clinically relevant HIV-1 strains.


2005 ◽  
Vol 79 (14) ◽  
pp. 8812-8827 ◽  
Author(s):  
Simon Beddows ◽  
Norbert Schülke ◽  
Marc Kirschner ◽  
Kelly Barnes ◽  
Michael Franti ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) complex comprises three gp120 exterior glycoproteins each noncovalently linked to a gp41 transmembrane glycoprotein. Monomeric gp120 proteins can elicit antibodies capable of neutralizing atypically sensitive test viruses in vitro, but these antibodies are ineffective against representative primary isolates and the gp120 vaccines failed to provide protection against HIV-1 transmission in vivo. Alternative approaches to raising neutralizing antibodies are therefore being pursued. Here we report on the antibody responses generated in rabbits against a soluble, cleaved, trimeric form of HIV-1JR-FL Env. In this construct, the gp120 and gp41 moieties are covalently linked by an intermolecular disulfide bond (SOS gp140), and an I559P substitution has been added to stabilize gp41-gp41 interactions (SOSIP gp140). We investigated the value of DNA priming and compared the use of membrane-bound and soluble priming antigens and of repeat boosting with soluble and particulate protein antigen. Compared to monomeric gp120, SOSIP gp140 trimers elicited approximately threefold lower titers of anti-gp120 antibodies. Priming with DNA encoding a membrane-bound form of the SOS gp140 protein, followed by several immunizations with soluble SOSIP gp140 trimers, resulted in antibodies capable of neutralizing sensitive strains at high titers. A subset of these sera also neutralized, at lower titers, HIV-1JR-FL and some other primary isolates in pseudovirus and/or whole-virus assays. Neutralization of these viruses was immunoglobulin mediated and was predominantly caused by antibodies to gp120 epitopes, but not the V3 region.


2003 ◽  
Vol 77 (1) ◽  
pp. 713-718 ◽  
Author(s):  
Aarti Raja ◽  
Miro Venturi ◽  
Peter Kwong ◽  
Joseph Sodroski

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Nirmin Alsahafi ◽  
Sai Priya Anand ◽  
Luis Castillo-Menendez ◽  
Myriam Maude Verly ◽  
Halima Medjahed ◽  
...  

ABSTRACT The entry of human immunodeficiency virus into host cells is mediated by the envelope glycoprotein (Env) trimeric spike, which consists of three exterior gp120 subunits and three transmembrane gp41 subunits. The trimeric Env undergoes extensive conformational rearrangement upon interaction with the CD4 receptor, transitioning from the unliganded, “closed” State 1 to more-open downstream State 2 and State 3 conformations. Changes in “restraining” amino acid residues, such as leucine 193 and isoleucine 423, destabilize State 1 Env, which then assumes entry-competent, downstream conformations. The introduction of an artificial disulfide bond linking the gp120 and gp41 subunits (SOS) in combination with the I559P (IP) change has allowed structural characterization of soluble gp140 (sgp140) trimers. The conformation of these SOSIP-stabilized sgp140 trimers has been suggested to represent the closed native State 1 conformation. Here we compare the impact on the membrane Env conformation of the SOSIP changes with that of the well-characterized changes (L193R and I423A) that shift Env to downstream States 2 and 3. The results presented here suggest that the SOSIP changes stabilize Env in a conformation that differs from State 1 but also from the downstream Env conformations stabilized by L193R or I423A. IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is triggered by receptor binding to mediate the entry of the virus into cells. Most structural studies of Env trimers have utilized truncated soluble gp140 Envs stabilized with the I559P and SOS changes. Here we present evidence indicating that these stabilizing changes have a profound impact on the conformation of Env, moving Env away from the native pretriggered Env conformation. Our studies underscore the need to acquire structural information on the pretriggered Env conformation, which is recognized by most broadly reactive neutralizing antibodies.


2005 ◽  
Vol 79 (17) ◽  
pp. 10902-10914 ◽  
Author(s):  
Mattias N. E. Forsell ◽  
Yuxing Li ◽  
Maria Sundbäck ◽  
Krisha Svehla ◽  
Peter Liljeström ◽  
...  

ABSTRACT The current lack of envelope glycoprotein immunogens that elicit broadly neutralizing antibody responses remains a major challenge for human immunodeficiency virus type 1 (HIV-1) vaccine development. However, the recent design and construction of stable soluble gp140 trimers have shown that some neutralization breadth can be achieved by using immunogens that better mimic the functional viral spike complex. The use of genetic delivery systems to drive the in vivo expression of such immunogens for the stimulation of neutralizing antibodies against HIV-1 may offer advantages by maintaining the quaternary structure of the trimeric envelope glycoproteins. Here, we describe the biochemical and immunogenic properties of soluble HIV-1 envelope glycoprotein trimers expressed by recombinant Semliki Forest virus (rSFV). The results presented here demonstrate that rSFV supports the expression of stable soluble gp140 trimers that retain recognition by conformationally sensitive antibodies. Further, we show that rSFV particle immunizations efficiently primed immune responses as measured after a single boost with purified trimeric gp140 protein, resulting in a Th1-biased antibody response. This differed from the Th2-biased antibody response obtained after repeated immunizations with purified gp140 protein trimers. Despite this difference, both regimens stimulated neutralizing antibody responses of similar potency. This suggests that rSFV may be a useful component of a viral vector prime-protein boost regimen aimed at stimulating both cell-mediated immune responses and neutralizing antibodies against HIV-1.


Sign in / Sign up

Export Citation Format

Share Document