scholarly journals Rab10 regulates the sorting of internalised TrkB to retrograde axonal transport

2021 ◽  
Author(s):  
Oscar M. Lazo ◽  
Giampietro Schiavo

AbstractThe extreme, complex morphology of neurons provides an unrivalled model to study the coordination between local signalling and long-range cell responses. A cogent example is provided by the binding of brain-derived neurotrophic factor (BDNF) to its receptor TrkB, which triggers signalling cascades at axon terminals that result in responses at the level of the cell body, including modulation of gene expression. Retrograde propagation of these critical signals relies on the sorting of activated TrkB receptors to retrograde axonal transport organelles termed signalling endosomes. In this work, we show that the small GTPase Rab10 is critical for the sorting of activated TrkB receptors to axonal retrograde carriers and the propagation of neurotrophin signalling from the axon terminal to the soma. Moreover, our data indicate that Rab10 defines a novel class of axonal organelles that are mobilised towards the axon terminal upon BDNF stimulation, thus enabling the axon to dynamically adjust the retrograde signalling flow to changes in BDNF availability at the synapse.

Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 431-445 ◽  
Author(s):  
Michael A. Spinner ◽  
Katherine Pinter ◽  
Catherine M. Drerup ◽  
Tory G. Herman

Active transport of organelles within axons is critical for neuronal health. Retrograde axonal transport, in particular, relays neurotrophic signals received by axon terminals to the nucleus and circulates new material among en passant synapses. A single motor protein complex, cytoplasmic dynein, is responsible for nearly all retrograde transport within axons: its linkage to and transport of diverse cargos is achieved by cargo-specific regulators. Here, we identify Vezatin as a conserved regulator of retrograde axonal transport. Vertebrate Vezatin (Vezt) is required for the maturation and maintenance of cell-cell junctions and has not previously been implicated in axonal transport. However, a related fungal protein, VezA, has been shown to regulate retrograde transport of endosomes in hyphae. In a forward genetic screen, we identified a loss-of-function mutation in the Drosophila vezatin-like (vezl) gene. We here show that vezl loss prevents a subset of endosomes, including signaling endosomes containing activated BMP receptors, from initiating transport out of motor neuron terminal boutons. vezl loss also decreases the transport of endosomes and dense core vesicles, but not mitochondria, within axon shafts. We disrupted vezt in zebrafish and found that vezt loss specifically impairs the retrograde axonal transport of late endosomes, causing their accumulation in axon terminals. Our work establishes a conserved, cargo-specific role for Vezatin proteins in retrograde axonal transport.


2020 ◽  
Author(s):  
Michael A. Spinner ◽  
Katherine Pinter ◽  
Catherine M. Drerup ◽  
Tory G. Herman

ABSTRACTActive transport of organelles within axons is critical for neuronal health. Retrograde axonal transport, in particular, relays neurotrophic signals received by axon terminals to the nucleus and circulates new material among en passant synapses. The single retrograde motor, cytoplasmic dynein, is linked to diverse cargos by adaptors that promote dynein motility. Here we identify Vezatin as a new, cargo-specific regulator of retrograde axonal transport. Loss-of-function mutations in the Drosophila vezatin-like (vezl) gene prevent signaling endosomes containing activated BMP receptors from initiating transport out of motor neuron terminal boutons. vezl loss also decreases the transport of endosomes and dense core vesicles (DCVs) within axon shafts. While vertebrate Vezatin (Vezt) has not previously been implicated in axonal transport, we show that vezt loss in zebrafish impairs the retrograde movement of late endosomes, causing their accumulation in axon terminals. Our work establishes a new, conserved, cargo-specific role for Vezatin proteins in axonal transport.


Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 1075-1085 ◽  
Author(s):  
Daryl D Hurd ◽  
William M Saxton

Abstract Previous work has shown that mutation of the gene that encodes the microtubule motor subunit kinesin heavy chain (Khc) in Drosophila inhibits neuronal sodium channel activity, action potentials and neurotransmitter secretion. These physiological defects cause progressive distal paralysis in larvae. To identify the cellular defects that cause these phenotypes, larval nerves were studied by light and electron microscopy. The axons of Khc mutants develop dramatic focal swellings along their lengths. The swellings are packed with fast axonal transport cargoes including vesicles, synaptic membrane proteins, mitochondria and prelysosomal organelles, but not with slow axonal transport cargoes such as cytoskeletal elements. Khc mutations also impair the development of larval motor axon terminals, causing dystrophic morphology and marked reductions in synaptic bouton numbers. These observations suggest that as the concentration of maternally provided wild-type KHC decreases, axonal organelles transported by kinesin periodically stall. This causes organelle jams that disrupt retrograde as well as anterograde fast axonal transport, leading to defective action potentials, dystrophic terminals, reduced transmitter secretion and progressive distal paralysis. These phenotypes parallel the pathologies of some vertebrate motor neuron diseases, including some forms of amyotrophic lateral sclerosis (ALS), and suggest that impaired fast axonal transport is a key element in those diseases.


1996 ◽  
Vol 7 (2) ◽  
pp. 331-343 ◽  
Author(s):  
K K Pfister ◽  
M W Salata ◽  
J F Dillman ◽  
E Torre ◽  
R J Lye

Cytoplasmic dynein is the microtubule minus-end-directed motor for the retrograde axonal transport of membranous organelles. Because of its similarity to the intermediate chains of flagellar dynein, the 74-kDa intermediate chain (IC74) subunit of dynein is thought to be involved in binding dynein to its membranous organelle cargo. Previously, we identified six isoforms of the IC74 cytoplasmic dynein subunit in the brain. We further demonstrated that cultured glia and neurons expressed different dynein IC74 isoforms and phospho-isoforms. Two isoforms were observed when dynein from glia was analyzed. When dynein from cultured neurons was analyzed, six IC74 isoforms were observed, although the relative amounts of the dynein isoforms from cultured neurons differed from those found in dynein from brain. To better understand the role of the neuronal IC74 isoforms and identify neuron-specific IC74 dynein subunits, the expression of the IC74 protein isoforms and mRNAs of various tissues were compared. As a result of this comparison, the identity of each of the isoform spots observed on two-dimensional gels was correlated with the products of each of the IC74 mRNAs. We also found that between the fifteenth day of gestation (E15) and the fifth day after birth (P5), the relative expression of the IC74 protein isoforms changes, demonstrating that the expression of IC74 isoforms is developmentally regulated in brain. During this time period, there is relatively little change in the abundance of the various IC74 mRNAs. The E15 to P5 time period is one of rapid process extension and initial pattern formation in the rat brain. This result indicates that the changes in neuronal IC74 isoforms coincide with neuronal differentiation, in particular the extension of processes. This suggests a role for the neuronal IC74 isoforms in the establishment or regulation of retrograde axonal transport.


Sign in / Sign up

Export Citation Format

Share Document