scholarly journals The Polar Night Shift: Annual Dynamics and Drivers of Microbial Community Structure in the Arctic Ocean

2021 ◽  
Author(s):  
Matthias Wietz ◽  
Christina Bienhold ◽  
Katja Metfies ◽  
Sinhue Torres-Valdes ◽  
Wilken-Jon von Appen ◽  
...  

Change is a constant in the Arctic Ocean, with extreme seasonal differences in daylight, ice cover and temperature. The biodiversity and ecology of marine microbes across these extremes remain poorly understood. Here, using an array of autonomous samplers and sensors, we portray an annual cycle of microbial biodiversity, nutrient budgets and oceanography in the major biomes of the Fram Strait. In the ice-free West Spitsbergen Current, community turnover followed the solar cycle, with distinct separation of a productive summer state dominated by diatoms and carbohydrate-degrading bacteria, and a regenerative winter state dominated by heterotrophic Syndiniales, radiolarians, chemoautotrophic bacteria and archaea. Winter mixing of the water column replenishing nitrate, phosphate and silicate, and the onset of light were the major turning points. The summer succession of Phaeocystis, Grammonema and Thalassiosira coincided with ephemeral peaks of Formosa, Polaribacter and NS clades, indicating metabolic relationships between phytoplankton and bacteria. In the East Greenland Current, ice cover and greater sampling depth coincided with weaker seasonality, featuring weaker bloom/decay events and an ice-related winter microbiome. Low ice cover and advection of Atlantic Water coincided with diminished abundances of chemoautotrophic bacteria while Phaeocystis and Flavobacteriaceae increased, suggesting that Atlantification alters phytoplankton diversity and the biological carbon pump. Our findings promote the understanding of microbial seasonality in Arctic waters, illustrating the ecological importance of the polar night and providing an essential baseline of microbial dynamics in a region severely affected by climate change.

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Matthias Wietz ◽  
Christina Bienhold ◽  
Katja Metfies ◽  
Sinhué Torres-Valdés ◽  
Wilken-Jon von Appen ◽  
...  

AbstractThe Arctic Ocean features extreme seasonal differences in daylight, temperature, ice cover, and mixed layer depth. However, the diversity and ecology of microbes across these contrasting environmental conditions remain enigmatic. Here, using autonomous samplers and sensors deployed at two mooring sites, we portray an annual cycle of microbial diversity, nutrient concentrations and physical oceanography in the major hydrographic regimes of the Fram Strait. The ice-free West Spitsbergen Current displayed a marked separation into a productive summer (dominated by diatoms and carbohydrate-degrading bacteria) and regenerative winter state (dominated by heterotrophic Syndiniales, radiolarians, chemoautotrophic bacteria, and archaea). The autumn post-bloom with maximal nutrient depletion featured Coscinodiscophyceae, Rhodobacteraceae (e.g. Amylibacter) and the SAR116 clade. Winter replenishment of nitrate, silicate and phosphate, linked to vertical mixing and a unique microbiome that included Magnetospiraceae and Dadabacteriales, fueled the following phytoplankton bloom. The spring-summer succession of Phaeocystis, Grammonema and Thalassiosira coincided with ephemeral peaks of Aurantivirga, Formosa, Polaribacter and NS lineages, indicating metabolic relationships. In the East Greenland Current, deeper sampling depth, ice cover and polar water masses concurred with weaker seasonality and a stronger heterotrophic signature. The ice-related winter microbiome comprised Bacillaria, Naviculales, Polarella, Chrysophyceae and Flavobacterium ASVs. Low ice cover and advection of Atlantic Water coincided with diminished abundances of chemoautotrophic bacteria while others such as Phaeocystis increased, suggesting that Atlantification alters microbiome structure and eventually the biological carbon pump. These insights promote the understanding of microbial seasonality and polar night ecology in the Arctic Ocean, a region severely affected by climate change.


2021 ◽  
Author(s):  
Agata Grynczel ◽  
Agnieszka Beszczynska-Moeller ◽  
Waldemar Walczowski

<p>The Arctic Ocean is undergoing rapid change. Satellite observations indicate significant negative Arctic sea ice extent trends in all months and substantial reduction of winter sea ice in the Atlantic sector. One of the possible reasons can be sought in the observed warming of Atlantic water, carried through Fram Strait into the Arctic Ocean. Fram Strait, as well as the region north of Svalbard, play a key role in controlling the amount of oceanic heat supplied to the Arctic Ocean and are the place of dynamic interaction between the ocean and sea ice. Shrinking sea ice cover in the southern part of Nansen Basin (north of Svalbard) and shifting the ice edge in Fram Strait are driven by the interplay between increased advection of oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions.</p><p>Processes related to the loss of sea ice and the upward transport of heat from the layers of the Arctic Ocean occupied by the Atlantic water are still not fully explored, but higher than average temperature of Atlantic inflow in the Nordic Seas influence the upper ocean stratification and ice cover in the Arctic Ocean, in particular in the north of Svalbard area. The regional sea ice cover decline is statistically signifcant in all months, but the largest changes in the Nansen Basin are observed in winter season. The winter sea ice loss north of Svalbard is most pronounced above the core of the inflow warm Atlantic water. The basis for this hypothesis of the research is that continuously shrinking sea ice cover in the region north of Svalbard and withdrawal of the sea ice cover towards the northeast are driven by the interplay between increased oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions, that can result in the increased ocean-air-sea ice exchange in winter seasons. In the current study we describe seasonal, interannual and decadal variability of concentration, drift, and thickness of sea ice in two regions, the north of Svalbard and central part of the Fram Strait, based on the satellite observations. To analyze the observed changes in the sea ice cover in relation to Atlantic water variability and atmospheric forcing we employ hydrographic data from the repeated CTD sections and new atmospheric reanalysis from ERA5. Atlantic water variability is described based on the set of summer synoptic sections across the Fram Strait branch of the Atlantic inflow that have been occupied annually since 1996 under the long-term observational program AREX of the Institute of Oceanology PAS. To elucidate driving mechanisms of the sea ice cover changes observed in different seasons in Fram Strait and north of Svalbard we analyze changes in the temperature, heat content and transport of the Atlantic water and describe their potential links to variable atmospheric forcing, including air temperature, air-ocean fluxes, and changes in wind pattern and wind stress.</p>


2020 ◽  
Author(s):  
Agata Grynczel ◽  
Agnieszka Beszczynska-Moeller ◽  
Waldemar Walczowski

<p>Recent satellite passive microwave observations indicate significant negative Arctic sea ice extent trends in all months and substantial reduction of winter sea ice in the Atlantic sector. Warm and salty oceanic water masses from the North Atlantic flow towards the Arctic Ocean along the eastern Fram Strait, carried by the West Spitsbergen Current (WSC). Fram Strait, as well as the region north of Svalbard, play a key role in controlling the amount of oceanic heat supplied to the Arctic Ocean and are the place of dynamic interaction between the ocean and sea ice. The north of Svalbard area is one of the regions where the substantial changes in sea ice concentrations are observed both in summer and in winter. One of the possible reasons can be sought in the observed warming of Atlantic water, carried through Fram Strait into the Arctic Ocean. The main goal of this work is to analyse and explain the sea ice variability along main pathways of the Atlantic origin water (AW) in the context of observed warming of Atlantic water layer. Shrinking sea ice cover in the southern part of Nansen Basin (north of Svalbard) and shifting the ice edge in Fram Strait are driven by the interplay between increased advection of oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions that result in the increased ocean-air-sea ice exchange in winter seasons. The basis for this hypothesis is warming of winter mean surface air temperature observed north of Svalbard and withdrawal of the sea ice cover towards the northeast, along with the pathways of water inflow in the Atlantic sector of the Arctic Ocean. Hydrographic data from vertical CTD profiles were collected during annual summer expeditions of the research vessel "Oceania", conducted in Fram Strait and the southern part of the Nansen Basin over the past two decades. The measurement strategy of the original research program AREX, which consists of the performance of cross-sections perpendicular to the presumed direction of the West Spitsbergen Current, allowed to observe changes in the properties and transport of the Atlantic Water carried to the Arctic Ocean. The analysis of past and present changes in the sea ice cover in relation to Atlantic water variability and atmospheric forcing employs hydrographic data from the repeated CTD sections, systematically collected since 1996 during annual summer Arctic long-term monitoring program AREX, satellite products of sea ice concentration and drift, and selected reanalysis data sets.</p>


Author(s):  
Michael D. DeGrandpre ◽  
Wiley Evans ◽  
Mary-Louise Timmermans ◽  
Richard A. Krishfield ◽  
William J Williams ◽  
...  

2021 ◽  
Author(s):  
David Gareth Babb ◽  
Ryan J. Galley ◽  
Stephen E. L. Howell ◽  
Jack Christopher Landy ◽  
Julienne Christine Stroeve ◽  
...  

2016 ◽  
Vol 48 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Tadeusz Pastusiak

Abstract The research on the ice cover of waterways, rivers, lakes, seas and oceans by satellite remote sensing methods began at the end of the twentieth century. There was a lot of data sources in diverse file formats. It has not yet carried out a comparative assessment of their usefulness. A synthetic indicator of the quality of data sources binding maps resolution, file publication, time delay and the functionality for the user was developed in the research process. It reflects well a usefulness of maps and allows to compare them. Qualitative differences of map content have relatively little impact on the overall assessment of the data sources. Resolution of map is generally acceptable. Actuality has the greatest impact on the map content quality for the current vessel’s voyage planning in ice. The highest quality of all studied sources have the regional maps in GIF format issued by the NWS / NOAA, general maps of the Arctic Ocean in NetCDF format issued by the OSI SAF and the general maps of the Arctic Ocean in GRIB-2 format issued by the NCEP / NOAA. Among them are maps containing information on the quality of presented parameter. The leader among the map containing all three of the basic characteristics of ice cover (ice concentration, ice thickness and ice floe size) are vector maps in GML format. They are the new standard of electronic vector maps for the navigation of ships in ice. Publishing of ice cover maps in the standard electronic map format S-411 for navigation of vessels in ice adopted by the International Hydrographic Organization is advisable in case is planned to launch commercial navigation on the lagoons, rivers and canals. The wide availability of and exchange of information on the state of ice cover on rivers, lakes, estuaries and bays, which are used exclusively for water sports, ice sports and ice fishing is possible using handheld mobile phones, smartphones and tablets.


2021 ◽  
Author(s):  
Ilka Peeken ◽  
Elisa Bergami ◽  
Ilaria Corsi ◽  
Benedikt Hufnagl ◽  
Christian Katlein ◽  
...  

<p>Marine plastic pollution is a growing worldwide environmental concern as recent reports indicate that increasing quantities of litter disperse into secluded environments, including Polar Regions. Plastic degrades into smaller fragments under the influence of sunlight, temperature changes, mechanic abrasion and wave action resulting in small particles < 5mm called microplastics (MP). Sea ice cores, collected in the Arctic Ocean have so far revealed extremely high concentrations of very small microplastic particles, which might be transferred in the ecosystem with so far unknown consequences for the ice dependant marine food chain.  Sea ice has long been recognised as a transport vehicle for any contaminates entering the Arctic Ocean from various long range and local sources. The Fram Strait is hereby both, a major inflow gateway of warm Atlantic water, with any anthropogenic imprints and the major outflow region of sea ice originating from the Siberian shelves and carried via the Transpolar Drift. The studied sea ice revealed a unique footprint of microplastic pollution, which were related to different water masses and indicating different source regions. Climate change in the Arctic include loss of sea ice, therefore, large fractions of the embedded plastic particles might be released and have an impact on living systems. By combining modeling of sea ice origin and growth, MP particle trajectories in the water column as well as MPs long-range transport via particle tracking and transport models we get first insights  about the sources and pathways of MP in the Arctic Ocean and beyond and how this might affect the Arctic ecosystem.</p>


2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Xuezhu Wang ◽  
Sergey Danilov ◽  
Nikolay Koldunov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document