The role of sea ice for plastic pollution in the Arctic

Author(s):  
Ilka Peeken ◽  
Elisa Bergami ◽  
Ilaria Corsi ◽  
Benedikt Hufnagl ◽  
Christian Katlein ◽  
...  

<p>Marine plastic pollution is a growing worldwide environmental concern as recent reports indicate that increasing quantities of litter disperse into secluded environments, including Polar Regions. Plastic degrades into smaller fragments under the influence of sunlight, temperature changes, mechanic abrasion and wave action resulting in small particles < 5mm called microplastics (MP). Sea ice cores, collected in the Arctic Ocean have so far revealed extremely high concentrations of very small microplastic particles, which might be transferred in the ecosystem with so far unknown consequences for the ice dependant marine food chain.  Sea ice has long been recognised as a transport vehicle for any contaminates entering the Arctic Ocean from various long range and local sources. The Fram Strait is hereby both, a major inflow gateway of warm Atlantic water, with any anthropogenic imprints and the major outflow region of sea ice originating from the Siberian shelves and carried via the Transpolar Drift. The studied sea ice revealed a unique footprint of microplastic pollution, which were related to different water masses and indicating different source regions. Climate change in the Arctic include loss of sea ice, therefore, large fractions of the embedded plastic particles might be released and have an impact on living systems. By combining modeling of sea ice origin and growth, MP particle trajectories in the water column as well as MPs long-range transport via particle tracking and transport models we get first insights  about the sources and pathways of MP in the Arctic Ocean and beyond and how this might affect the Arctic ecosystem.</p>

2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Xuezhu Wang ◽  
Sergey Danilov ◽  
Nikolay Koldunov ◽  
...  

2020 ◽  
Author(s):  
Georgi Laukert ◽  
Dorothea Bauch ◽  
Ilka Peeken ◽  
Thomas Krumpen ◽  
Kirstin Werner ◽  
...  

<p>The lifetime and thickness of Arctic sea ice have markedly decreased in the recent past. This affects Arctic marine ecosystems and the biological pump, given that sea ice acts as platform and transport medium of marine and atmospheric nutrients. At the same time sea ice reduces light penetration to the Arctic Ocean and restricts ocean/atmosphere exchange. In order to understand the ongoing changes and their implications, reconstructions of source regions and drift trajectories of Arctic sea ice are imperative. Automated ice tracking approaches based on satellite-derived sea-ice motion products (e.g. ICETrack) currently perform well in dense ice fields, but provide limited information at the ice edge or in poorly ice-covered areas. Radiogenic neodymium (Nd) isotopes (ε<sub>Nd</sub>) have the potential to serve as a chemical tracer of sea-ice provenance and thus may provide information beyond what can be expected from satellite-based assessments. This potential results from pronounced ε<sub>Nd</sub> differences between the distinct marine and riverine sources, which feed the surface waters of the different sea-ice formation regions. We present the first dissolved (< 0.45 µm) Nd isotope and concentration data obtained from optically clean Arctic first- and multi-year sea ice (ice cores) collected from different ice floes across the Fram Strait during the RV POLARSTERN cruise PS85 in 2014. Our data confirm the preservation of the seawater ε<sub>Nd</sub>signatures in sea ice despite low Nd concentrations (on average ~ 6 pmol/kg) resulting from efficient brine rejection. The large range in ε<sub>Nd</sub> signatures (~ -10 to -30) mirrors that of surface waters in various parts of the Arctic Ocean, indicating that differences between ice floes but also between various sections in an individual ice core reflect the origin and evolution of the sea ice over time. Most ice cores have ε<sub>Nd</sub> signatures of around -10, suggesting that the sea ice was formed in well-mixed waters in the central Arctic Ocean and transported directly to the Fram Strait via the Transpolar Drift. Some ice cores, however, also revealed highly unradiogenic signatures (ε<sub>Nd</sub> < ~ -15) in their youngest (bottom) sections, which we attribute to incorporation of meltwater from Greenland into newly grown sea ice layers. Our new approach facilitates the reconstruction of the origin and spatiotemporal evolution of isolated sea-ice floes in the future Arctic.</p>


2021 ◽  
Author(s):  
Waldemar Walczowski ◽  
Agnieszka Beszczyńska-Möller ◽  
Małgorzata Merchel

<p>Almost 4000 operational Argo floats covering the world's ocean provide near-real-time data on its state. The Arctic is less covered than other waters, but observations collected by Argo floats are gaining in importance. By delivering year-round measurements from the water column down to 2000 m (or to the bottom) along float trajectories, they complement and enhance the synoptic data collected during ship campaigns or by fixed moorings. However, oceanographic measurements with autonomous platforms are significantly limited in the Arctic regions by the presence of sea ice.</p><p>Here we present results obtained by Argo floats deployed in 2012-2020 by the Institute of Oceanology Polish Academy of Sciences (IOPAN) during summer campaigns of RV Oceania. In most years, the Argo floats were launched in the eastern branch (core) and in the western branch of the West Spitsbergen Current (WSC) within the Atlantic water inflow towards the Arctic Ocean. Floats deployed in the WSC core drift predominantly northward over the shelf break and upper slope west of Svalbard. After passing Fram Strait the floats usually turn eastward and continue over the northern Svalbard shelf brake, being advected with the Svalbard Branch of the Atlantic inflow into the Arctic Ocean Boundary Current. The easternmost position reached by the IOPAN Argo float was 39.6°E. Ultimately all deployed floats submerge under the sea ice north of Svalbard or farther to the east and die under the ice. Argo floats deployed in the western WSC branch over the underwater ridges, usually recirculate to the west and continue southward with the East Greenland Current. The float WMO 3901851 that drifted to the Labrador Sea, reached the southernmost latitude of 52.5°N and have been working until now for 4.5 years, which is unusual in the Arctic conditions.    </p><p>The measurements collected in the Marginal Ice Zone are particularly interesting for studying the ocean-atmosphere-ice interactions at the boundary between open and ice-covered ocean as well as they can be used for developing the ice avoidance algorithms for the Argo floats and other under ice sensors and platforms. A number of profiles obtained by Argo floats under the sea ice provide unique measurements in the upper ocean layer that is usually inaccessible from other platforms (e.g., moorings). In 2020 several profiles were collected under the ice cover by Argo floats north of Svalbard and transmitted after the float emerged in the polynya. The eastward flow of warm (up to 4° C at 80 m depth) Atlantic water was observed along the float trajectory over the shelf break. Measurements by Argo floats, revealing the dynamics and transformation of the Atlantic water entering the Arctic Ocean, are compared with ship-borne observations collected during the IOPAN long-term observational program AREX and year-round data from IOPAN moorings deployed north of Svalbard under the A-TWAIN and INTAROS projects.</p>


2021 ◽  
Author(s):  
Agata Grynczel ◽  
Agnieszka Beszczynska-Moeller ◽  
Waldemar Walczowski

<p>The Arctic Ocean is undergoing rapid change. Satellite observations indicate significant negative Arctic sea ice extent trends in all months and substantial reduction of winter sea ice in the Atlantic sector. One of the possible reasons can be sought in the observed warming of Atlantic water, carried through Fram Strait into the Arctic Ocean. Fram Strait, as well as the region north of Svalbard, play a key role in controlling the amount of oceanic heat supplied to the Arctic Ocean and are the place of dynamic interaction between the ocean and sea ice. Shrinking sea ice cover in the southern part of Nansen Basin (north of Svalbard) and shifting the ice edge in Fram Strait are driven by the interplay between increased advection of oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions.</p><p>Processes related to the loss of sea ice and the upward transport of heat from the layers of the Arctic Ocean occupied by the Atlantic water are still not fully explored, but higher than average temperature of Atlantic inflow in the Nordic Seas influence the upper ocean stratification and ice cover in the Arctic Ocean, in particular in the north of Svalbard area. The regional sea ice cover decline is statistically signifcant in all months, but the largest changes in the Nansen Basin are observed in winter season. The winter sea ice loss north of Svalbard is most pronounced above the core of the inflow warm Atlantic water. The basis for this hypothesis of the research is that continuously shrinking sea ice cover in the region north of Svalbard and withdrawal of the sea ice cover towards the northeast are driven by the interplay between increased oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions, that can result in the increased ocean-air-sea ice exchange in winter seasons. In the current study we describe seasonal, interannual and decadal variability of concentration, drift, and thickness of sea ice in two regions, the north of Svalbard and central part of the Fram Strait, based on the satellite observations. To analyze the observed changes in the sea ice cover in relation to Atlantic water variability and atmospheric forcing we employ hydrographic data from the repeated CTD sections and new atmospheric reanalysis from ERA5. Atlantic water variability is described based on the set of summer synoptic sections across the Fram Strait branch of the Atlantic inflow that have been occupied annually since 1996 under the long-term observational program AREX of the Institute of Oceanology PAS. To elucidate driving mechanisms of the sea ice cover changes observed in different seasons in Fram Strait and north of Svalbard we analyze changes in the temperature, heat content and transport of the Atlantic water and describe their potential links to variable atmospheric forcing, including air temperature, air-ocean fluxes, and changes in wind pattern and wind stress.</p>


2020 ◽  
Author(s):  
Vladimir Ivanov ◽  
Ivan Frolov ◽  
Kirill Filchuk

<p>In the recent few years the topic of accelerated sea ice loss, and related changes in the vertical structure of water masses in the East-Atlantic sector of the Arctic Ocean, including the Barents Sea and the western part of the Nansen Basin, has been in the foci of multiple studies. This region even earned the name the “Arctic warming hotspot”, due to the extreme retreat of sea ice and clear signs of change in the vertical hydrographic structure from the Arctic type to the sub-Arctic one. A gradual increase in temperature and salinity in this area has been observed since the mid-2000s. This trend is hypothetically associated with a general decrease in the volume of sea ice in the Arctic Ocean, which leads to a decrease of ice import in the Barents Sea, salinization, weakening of density stratification, intensification of vertical mixing and an increase of heat and salt fluxes from the deep to the upper mixed layer. The result of such changes is a further reduction of sea ice, i.e. implementation of positive feedback, which is conventionally refereed as the “atlantification. Due to the fact that the Barents Sea is a relatively shallow basin, the process of atlantification might develop here much faster than in the deep Nansen Basin. Thus, theoretically, the hydrographic regime in the northern part of the Barents Sea may rapidly transform to a “Nordic Seas – wise”, a characteristic feature of which is the year-round absence of the ice cover with debatable consequences for the climate and ecosystem of the region and adjacent land areas. Due to the obvious reasons, historical observations in the Barents Sea mostly cover the summer season. Here we present a rare oceanographic data, collected during the late winter - early spring in 2019. Measurements were occupied at four sequential oceanographic surveys from the boundary between the Norwegian Sea and the Barents Sea – the so called Barents Sea opening to the boundary between the Barents Sea and the Kara Sea. Completed hydrological sections allowed us to estimate the contribution of the winter processes in the Atlantic Water transformation at the end of the winter season. Characteristic feature of the observed transformation is the homogenization of the near-to-bottom part of the water column with remaining stratification in the upper part. A probable explanation of such changes is the dominance of shelf convection and cascading of dense water over the open sea convection. In this case, complete homogenization of the water column does not occur, since convection in the open sea is impeded by salinity and density stratification, which is maintained by melting of the imported sea ice in the relatively warm water. The study was supported by RFBR grant # 18-05-60083.</p>


2018 ◽  
Vol 48 (9) ◽  
pp. 2029-2055 ◽  
Author(s):  
Takamasa Tsubouchi ◽  
Sheldon Bacon ◽  
Yevgeny Aksenov ◽  
Alberto C. Naveira Garabato ◽  
Agnieszka Beszczynska-Möller ◽  
...  

AbstractThis paper presents the first estimate of the seasonal cycle of ocean and sea ice heat and freshwater (FW) fluxes around the Arctic Ocean boundary. The ocean transports are estimated primarily using 138 moored instruments deployed in September 2005–August 2006 across the four main Arctic gateways: Davis, Fram, and Bering Straits, and the Barents Sea Opening (BSO). Sea ice transports are estimated from a sea ice assimilation product. Monthly velocity fields are calculated with a box inverse model that enforces mass and salt conservation. The volume transports in the four gateways in the period (annual mean ± 1 standard deviation) are −2.1 ± 0.7 Sv in Davis Strait, −1.1 ± 1.2 Sv in Fram Strait, 2.3 ± 1.2 Sv in the BSO, and 0.7 ± 0.7 Sv in Bering Strait (1 Sv ≡ 106 m3 s−1). The resulting ocean and sea ice heat and FW fluxes are 175 ± 48 TW and 204 ± 85 mSv, respectively. These boundary fluxes accurately represent the annual means of the relevant surface fluxes. The ocean heat transport variability derives from velocity variability in the Atlantic Water layer and temperature variability in the upper part of the water column. The ocean FW transport variability is dominated by Bering Strait velocity variability. The net water mass transformation in the Arctic entails a freshening and cooling of inflowing waters by 0.62 ± 0.23 in salinity and 3.74° ± 0.76°C in temperature, respectively, and a reduction in density by 0.23 ± 0.20 kg m−3. The boundary heat and FW fluxes provide a benchmark dataset for the validation of numerical models and atmospheric reanalysis products.


2020 ◽  
Author(s):  
Katrine Elnegaard Hansen ◽  
Jacques Giraudeau ◽  
Lukas Wacker ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

Abstract. The Baffin Bay is a semi-enclosed basin connecting the Arctic Ocean and the western North Atlantic, thus making out a significant pathway for heat exchange. Here we reconstruct the alternating advection of relatively warmer and saline Atlantic waters versus the incursion of colder Arctic water masses entering the Baffin Bay through the multiple gateways in the Canadian Arctic Archipelago and the Nares Strait during the Holocene. We carried out benthic foraminiferal assemblage analyses, X-Ray Fluorescence scanning and radiocarbon dating of a 738  cm long marine sediment core retrieved from the eastern Baffin Bay near Upernavik (Core AMD14-204C; 987m water depth). Results reveal that the eastern Baffin Bay was subjected to several oceanographic changes during the last 9.2 ka BP. Waning deglacial conditions with enhanced meltwater influxes and an extensive sea-ice cover prevailed in the eastern Baffin Bay from 9.2–7.9 ka BP. A transition towards bottom water ameliorations are recorded at 7.9 ka BP by increased advection of Atlantic water masses, encompassing the Holocene Thermal Maximum. A cold period with growing sea-ice cover at 6.7 ka BP interrupts the overall warm subsurface water conditions, promoted by a weaker northward flow of Atlantic waters. The onset of the Neoglaciation at ca. 2.9 ka BP, is marked by an abrupt transition towards a benthic fauna dominated by agglutinated species likely partly explained by a reduction of the influx of Atlantic water, allowing increased influx of the cold, corrosive Baffin Bay Deep Water originating from the Arctic Ocean, to enter the Baffin Bay through the Nares Strait. These cold subsurface water conditions persisted throughout the late Holocene, only interrupted by short-lived warmings superimposed on this cooling trend.


2019 ◽  
Author(s):  
Jutta E. Wollenburg ◽  
Morten Iversen ◽  
Christian Katlein ◽  
Thomas Krumpen ◽  
Marcel Nicolaus ◽  
...  

Abstract. To date observations on a single location indicate that cryogenic gypsum (Ca[SO4]·2H2O) may constitute an efficient but hitherto overlooked ballasting mineral enhancing the efficiency of the biological carbon pump in the Arctic Ocean. In June–July 2017 we sampled cryogenic gypsum under pack-ice in the Nansen Basin north of Svalbard using a plankton net mounted on a Remotely Operated Vehicle (ROVnet). Cryogenic gypsum crystals were present at all sampled stations, which suggested a persisting cryogenic gypsum release from melting sea ice throughout the investigated area. This was supported by a sea ice backtracking model that indicated that gypsum release was not related to a specific region of sea ice formation. The observed cryogenic gypsum crystals exhibited a large variability in morphology and size, with the largest crystals exceeding a length of 1 cm. Preservation, temperature and pressure laboratory studies revealed that gypsum dissolution rates accelerated with increasing temperature and pressure, ranging from 6 % d−1 by mass in Polar Surface Water (-0.5 °C) to 81 % d−1 by mass in Atlantic Water (2.5 °C at 65 bar). When testing the preservation of gypsum in Formaldehyde-fixed samples we observed immediate dissolution. Dissolution at warmer temperatures and through inappropriate preservation media may thus explain why cryogenic gypsum was not observed in scientific samples previously. Direct measurements of gypsum crystal sinking velocities ranged between 200 and 7000 m d−1 indicated that gypsum-loaded marine aggregates could rapidly sink from the surface to abyssal depths, supporting the hypothesised potential as a ballasting mineral in the Arctic Ocean.


2011 ◽  
Vol 8 (6) ◽  
pp. 2313-2376 ◽  
Author(s):  
B. Rudels

Abstract. The first hydrographic data from the Arctic Ocean, the section from the Laptev Sea to the passage between Greenland and Svalbard obtained by Nansen on the drift by Fram 1893–1896, aptly illustrate the main features of Arctic Ocean oceanography and indicate possible processes active in transforming the water masses in the Arctic Ocean. Many, perhaps most, of these processes were identified already by Nansen, who put his mark on almost all subsequent research in the Arctic Ocean. Here we shall revisit some key questions and follow how our understanding has evolved from the early 20th century to present. What questions, if any, can now be regarded as solved and which remain still open? Five different but connected topics will be discussed: (1) The low salinity surface layer and the storage and export of freshwater. (2) The vertical heat transfer from the Atlantic water to sea ice and to the atmosphere. (3) The circulation and mixing of the two Atlantic inflow branches. (4) The formation and circulation of deep and bottom waters in the Arctic Ocean. (5) The exchanges through Fram Strait. Foci will be on the potential effects of increased freshwater input and reduced sea ice export on the freshwater storage and residence time in the Arctic Ocean, on the deep waters of the Makarov Basin and on the circulation and relative importance of the two inflows, over the Barents Sea and through Fram Strait, for the distribution of heat in the intermediate layers of the Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document