scholarly journals Structure of the hexameric fungal plasma membrane proton pump in its auto-inhibited state

2021 ◽  
Author(s):  
Sabine Heit ◽  
Maxwell M.G. Geurts ◽  
Bonnie J. Murphy ◽  
Robin A. Corey ◽  
Deryck J. Mills ◽  
...  

AbstractThe fungal plasma membrane H+-ATPase Pma1 is a vital enzyme, generating a proton-motive force that drives the import of essential nutrients. Auto-inhibited Pma1 hexamers in starving fungi are activated by glucose signalling resulting in phosphorylation of the auto-inhibitory domain. As related P-type ATPases are not known to oligomerise, the physiological relevance of Pma1 hexamers remains unknown. We have determined the structure of hexameric Pma1 from Neurospora crassa by cryo-EM at 3.3 Å resolution, elucidating the molecular basis for hexamer formation and auto-inhibition, and providing a basis for structure-based drug development. Coarse-grained molecular dynamics simulations in a lipid bilayer suggest lipid-mediated contacts between monomers and a substantial protein-induced membrane deformation that could act as a proton-attracting funnel.

2021 ◽  
Author(s):  
Lea Rems ◽  
Xinru Tang ◽  
Fangwei Zhao ◽  
Sergio Perez-Conesa ◽  
Ilaria Testa ◽  
...  

The plasma membrane of a biological cell is a complex assembly of lipids and membrane proteins, which tightly regulate transmembrane transport. When a cell is exposed to a strong electric field, the membrane integrity becomes transiently disrupted by formation of transmembrane pores. This phenomenon, termed electroporation, is already utilized in many rapidly developing applications in medicine including gene therapy, cancer treatment, and treatment of cardiac arrythmias. However, the molecular mechanisms of electroporation are not yet sufficiently well understood; in particular, it is unclear where exactly pores form in the complex organization of the plasma membrane. In this study we combine coarse-grained molecular dynamics simulations, machine learning methods, and Bayesian survival analysis to identify how formation of pores depends on the local lipid organization. We show that pores do not form homogeneously across the membrane, but colocalize with domains that have specific features, the most important being high density of polyunsaturated lipids. We further show that knowing the lipid organization is sufficient to reliably predict poration sites with machine learning. However, by analysing poration kinetics with Bayesian survival analysis we then show that poration does not depend solely on local lipid arrangement, but also on membrane mechanical properties and the polarity of the electric field. Finally, we discuss how the combination of atomistic and coarse-grained molecular dynamics simulations, machine learning methods, and Bayesian survival analysis can guide the design of future experiments and help us to develop an accurate description of plasma membrane electroporation on the whole-cell level. Achieving this will allow us to shift the optimization of electroporation applications from blind trial-and-error approaches to mechanistic-driven design.


2017 ◽  
Author(s):  
Robin A. Corey ◽  
Euan Pyle ◽  
William J. Allen ◽  
Marina Casiraghi ◽  
Bruno Miroux ◽  
...  

AbstractThe transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of pre-proteins across the plasma membrane, powered by ATP hydrolysis and the trans-membrane proton-motive-force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly by cardiolipin, a specialised phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific cardiolipin binding sites on the Thermotoga maritima SecA-SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry and biochemical analysis of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional cardiolipin binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for cardiolipin in the conferral of PMF-stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery and thereby stimulate protein transport, by an as yet unknown mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, towards investigation of both the nature and functional implications of protein-lipid interactions.Significance StatementMany proteins are located in lipid membranes surrounding cells and cellular organelles. The membrane can impart important structural and functional effects on the protein, making understanding of this interaction critical. Here, we apply computational simulation to the identification of conserved lipid binding sites on an important highly conserved bacterial membrane protein, the Sec translocase (SecA-SecYEG), which uses ATP and the proton motive force (PMF) to secrete proteins across the bacterial plasma membrane. We experimentally validate and reveal the conserved nature of these binding sites, and use functional analyses to investigate the biological significance of this interaction. We demonstrate that these interactions are specific, transient, and critical for both ATP- and PMF- driven protein secretion.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2020 ◽  
Author(s):  
Florencia Klein ◽  
Daniela Cáceres-Rojas ◽  
Monica Carrasco ◽  
Juan Carlos Tapia ◽  
Julio Caballero ◽  
...  

<p>Although molecular dynamics simulations allow for the study of interactions among virtually all biomolecular entities, metal ions still pose significant challenges to achieve an accurate structural and dynamical description of many biological assemblies. This is particularly the case for coarse-grained (CG) models. Although the reduced computational cost of CG methods often makes them the technique of choice for the study of large biomolecular systems, the parameterization of metal ions is still very crude or simply not available for the vast majority of CG- force fields. Here, we show that incorporating statistical data retrieved from the Protein Data Bank (PDB) to set specific Lennard-Jones interactions can produce structurally accurate CG molecular dynamics simulations. Using this simple approach, we provide a set of interaction parameters for Calcium, Magnesium, and Zinc ions, which cover more than 80% of the metal-bound structures reported on the PDB. Simulations performed using the SIRAH force field on several proteins and DNA systems show that using the present approach it is possible to obtain non-bonded interaction parameters that obviate the use of topological constraints. </p>


2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


Sign in / Sign up

Export Citation Format

Share Document